HDU 4726 Kia's Calculation

5646 ワード

Kia's Calculation
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 295    Accepted Submission(s): 80
Problem Description
Doctor Ghee is teaching Kia how to calculate the sum of two integers. But Kia is so careless and alway forget to carry a number when the sum of two digits exceeds 9. For example, when she calculates 4567+5789, she will get 9246, and for 1234+9876, she will get 0. Ghee is angry about this, and makes a hard problem for her to solve:
Now Kia has two integers A and B, she can shuffle the digits in each number as she like, but leading zeros are not allowed. That is to say, for A = 11024, she can rearrange the number as 10124, or 41102, or many other, but 02411 is not allowed.
After she shuffles A and B, she will add them together, in her own way. And what will be the maximum possible sum of A "+"B ?
 
Input
The rst line has a number T (T <= 25) , indicating the number of test cases.
For each test case there are two lines. First line has the number A, and the second line has the number B.
Both A and B will have same number of digits, which is no larger than 10
6, and without leading zeros.
 
Output
For test case X, output "Case #X: "first, then output the maximum possible sum without leading zeros.
 
Sample Input
 
   
1 5958 3036
 

Sample Output
 
   
Case #1: 8984
 

Source
2013 ACM/ICPC Asia Regional Online —— Warmup2
 

Recommend
zhuyuanchen520
 
题意: 有2个合法的整数。 长度为 10^6。 数字的每一位都能移动, 但移动后的整数一定要是合法的, 即无前导零。 使得 A + B 最大
思路: 因为固定搭配不变
例如 要得到5 ,   (0, 5)(1,4)(2,3) (6, 9) (7,8) 互不干扰。
如果就统计 
A中  0~9分别出现多少个,
B中 0~9分别出现多少个。
除了第一位外, 其他位都是要大就大。
第一位不能出现0, 即可。
#include 
#include 
#include 
using namespace std;
const int V = 1000000 + 50;
int a[20], b[20], T, s = 1;
char ch[V], dh[V], ans[V];
int main() {
    int i, j, k;
    scanf("%d", &T);
    while(T--) {
        memset(a, 0, sizeof(a));
        memset(b, 0, sizeof(b));
        scanf("%s%s", &ch, &dh);
        int len = strlen(ch);
        if(len == 1) {
            printf("Case #%d: %d
", s++, (ch[0] - '0' + dh[0] - '0') % 10); continue; } for(i = 0; ch[i]; ++i) a[ch[i] - '0']++; for(i = 0; dh[i]; ++i) b[dh[i] - '0']++; for(i = 0; i < len; ++i) { // int flag = 0; for(j = 9; j >= 0 && !flag; --j) { // for(k = 0; k <= 9; ++k) { if(j - k >= 0) { if(i == 0 && (k == 0 || j - k == 0)) ; else { if(a[k] > 0 && b[j - k] > 0) { ans[i] = j + '0'; a[k]--; b[j - k]--; flag = 1; break; } } } if(i == 0 && (k == 0 || j + 10 - k == 0)) ; else { if(a[k] > 0 && b[j + 10 - k] > 0) { ans[i] = j + '0'; a[k]--; b[j + 10 - k]--; flag = 1; break; } } } } } ans[i] = '\0'; if(ans[0] == '0') printf("Case #%d: 0
", s++); else printf("Case #%d: %s
", s++, ans); } }