Pytorchベース-CITAR画像分類CNN

10165 ワード

テストCUDA
import torch
import numpy as np

# check if CUDA is available
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')

データのロード
from torchvision import datasets
import torchvision.transforms as transforms
from torch.utils.data.sampler import SubsetRandomSampler

# number of subprocesses to use for data loading
num_workers = 0
# how many samples per batch to load
batch_size = 20
# percentage of training set to use as validation
valid_size = 0.2

# convert data to a normalized torch.FloatTensor
transform = transforms.Compose([
    transforms.RandomHorizontalFlip(), # randomly flip and rotate
    transforms.RandomRotation(10),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])

# choose the training and test datasets
train_data = datasets.CIFAR10('data', train=True,
                              download=True, transform=transform)
test_data = datasets.CIFAR10('data', train=False,
                             download=True, transform=transform)

# obtain training indices that will be used for validation
num_train = len(train_data)
indices = list(range(num_train))
np.random.shuffle(indices)
split = int(np.floor(valid_size * num_train))
train_idx, valid_idx = indices[split:], indices[:split]

# define samplers for obtaining training and validation batches
train_sampler = SubsetRandomSampler(train_idx)
valid_sampler = SubsetRandomSampler(valid_idx)

# prepare data loaders (combine dataset and sampler)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
    sampler=train_sampler, num_workers=num_workers)
valid_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, 
    sampler=valid_sampler, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, 
    num_workers=num_workers)

# specify the image classes
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
           'dog', 'frog', 'horse', 'ship', 'truck']

トレーニングデータの表示
import matplotlib.pyplot as plt
%matplotlib inline

# helper function to un-normalize and display an image
def imshow(img):
    img = img / 2 + 0.5  # unnormalize
    plt.imshow(np.transpose(img, (1, 2, 0)))  # convert from Tensor image
# obtain one batch of training images
dataiter = iter(train_loader)
images, labels = dataiter.next()
images = images.numpy() # convert images to numpy for display

# plot the images in the batch, along with the corresponding labels
fig = plt.figure(figsize=(25, 4))
# display 20 images
for idx in np.arange(20):
    ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[])
    imshow(images[idx])
    ax.set_title(classes[labels[idx]])

画像の詳細表示
rgb_img = np.squeeze(images[3])
channels = ['red channel', 'green channel', 'blue channel']

fig = plt.figure(figsize = (36, 36)) 
for idx in np.arange(rgb_img.shape[0]):
    ax = fig.add_subplot(1, 3, idx + 1)
    img = rgb_img[idx]
    ax.imshow(img, cmap='gray')
    ax.set_title(channels[idx])
    width, height = img.shape
    thresh = img.max()/2.5
    for x in range(width):
        for y in range(height):
            val = round(img[x][y],2) if img[x][y] !=0 else 0
            ax.annotate(str(val), xy=(y,x),
                    horizontalalignment='center',
                    verticalalignment='center', size=8,
                    color='white' if img[x][y]

CNNネットワークアーキテクチャの定義
import torch.nn as nn
import torch.nn.functional as F

# define the CNN architecture
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # convolutional layer
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        self.conv2 = nn.Conv2d(16,32,3,padding=1)
        self.conv3 = nn.Conv2d(32,64,3,padding=1)
        # max pooling layer
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(64*4*4,500)
        self.fc2 = nn.Linear(500,10)
        self.dropout = nn.Dropout(0.2)

    def forward(self, x):
        # add sequence of convolutional and max pooling layers
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = self.pool(F.relu(self.conv3(x)))
        
        x = x.view(-1,64*4*4)
        x = self.dropout(x)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# create a complete CNN
model = Net()
print(model)

# move tensors to GPU if CUDA is available
if train_on_gpu:
    model.cuda()

損失関数とオプティマイザの指定
import torch.optim as optim

# specify loss function
criterion = nn.CrossEntropyLoss()

# specify optimizer
optimizer = optim.SGD(model.parameters(),lr=0.01)

トレーニングネットワーク
# number of epochs to train the model
n_epochs = 30 # you may increase this number to train a final model

valid_loss_min = np.Inf # track change in validation loss

for epoch in range(1, n_epochs+1):

    # keep track of training and validation loss
    train_loss = 0.0
    valid_loss = 0.0
    
    ###################
    # train the model #
    ###################
    model.train()
    for data, target in train_loader:
        # move tensors to GPU if CUDA is available
        if train_on_gpu:
            data, target = data.cuda(), target.cuda()
        # clear the gradients of all optimized variables
        optimizer.zero_grad()
        # forward pass: compute predicted outputs by passing inputs to the model
        output = model(data)
        # calculate the batch loss
        loss = criterion(output, target)
        # backward pass: compute gradient of the loss with respect to model parameters
        loss.backward()
        # perform a single optimization step (parameter update)
        optimizer.step()
        # update training loss
        train_loss += loss.item()*data.size(0)
        
    ######################    
    # validate the model #
    ######################
    model.eval()
    for data, target in valid_loader:
        # move tensors to GPU if CUDA is available
        if train_on_gpu:
            data, target = data.cuda(), target.cuda()
        # forward pass: compute predicted outputs by passing inputs to the model
        output = model(data)
        # calculate the batch loss
        loss = criterion(output, target)
        # update average validation loss 
        valid_loss += loss.item()*data.size(0)
    
    # calculate average losses
    train_loss = train_loss/len(train_loader.dataset)
    valid_loss = valid_loss/len(valid_loader.dataset)
        
    # print training/validation statistics 
    print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format(
        epoch, train_loss, valid_loss))
    
    # save model if validation loss has decreased
    if valid_loss <= valid_loss_min:
        print('Validation loss decreased ({:.6f} --> {:.6f}).  Saving model ...'.format(
        valid_loss_min,
        valid_loss))
        torch.save(model.state_dict(), 'model_cifar.pt')
        valid_loss_min = valid_loss

検証損失が最も低いモデルのロード
model.load_state_dict(torch.load('model_cifar.pt'))

検証トレーニングのネットワーク
# track test loss
test_loss = 0.0
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))

model.eval()
# iterate over test data
for data, target in test_loader:
    # move tensors to GPU if CUDA is available
    if train_on_gpu:
        data, target = data.cuda(), target.cuda()
    # forward pass: compute predicted outputs by passing inputs to the model
    output = model(data)
    # calculate the batch loss
    loss = criterion(output, target)
    # update test loss 
    test_loss += loss.item()*data.size(0)
    # convert output probabilities to predicted class
    _, pred = torch.max(output, 1)    
    # compare predictions to true label
    correct_tensor = pred.eq(target.data.view_as(pred))
    correct = np.squeeze(correct_tensor.numpy()) if not train_on_gpu else np.squeeze(correct_tensor.cpu().numpy())
    # calculate test accuracy for each object class
    for i in range(batch_size):
        label = target.data[i]
        class_correct[label] += correct[i].item()
        class_total[label] += 1

# average test loss
test_loss = test_loss/len(test_loader.dataset)
print('Test Loss: {:.6f}
'.format(test_loss)) for i in range(10): if class_total[i] > 0: print('Test Accuracy of %5s: %2d%% (%2d/%2d)' % ( classes[i], 100 * class_correct[i] / class_total[i], np.sum(class_correct[i]), np.sum(class_total[i]))) else: print('Test Accuracy of %5s: N/A (no training examples)' % (classes[i])) print('
Test Accuracy (Overall): %2d%% (%2d/%2d)' % ( 100. * np.sum(class_correct) / np.sum(class_total), np.sum(class_correct), np.sum(class_total)))

テスト結果の表示
# obtain one batch of test images
dataiter = iter(test_loader)
images, labels = dataiter.next()
images.numpy()

# move model inputs to cuda, if GPU available
if train_on_gpu:
    images = images.cuda()

# get sample outputs
output = model(images)
# convert output probabilities to predicted class
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())

# plot the images in the batch, along with predicted and true labels
fig = plt.figure(figsize=(25, 4))
for idx in np.arange(20):
    ax = fig.add_subplot(2, 20/2, idx+1, xticks=[], yticks=[])
    imshow(images[idx])
    ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]),
                 color=("green" if preds[idx]==labels[idx].item() else "red"))