ソフトウェアプロセスマシン1026(15)


ソフトウェアプロセスマシン1026(15)


1.HumanActivityの追加版

import pandas as pd
import matplotlib.pyplot as plt
feature_name_df= pd.read_csv('./human_activity/features.txt',
                             sep='\s+',
                             header=None,
                             names=['column_index','column_name'])
feature_name_df.head(2)

feature_name = feature_name_df.iloc[:,1].values.tolist()
feature_name

feature_dup_df = feature_name_df.groupby('column_name').count()

feature_dup_df.head(2)

feature_dup_df[feature_dup_df['column_index']>1]

def get_new_feature_name_df(old_feature_name_df):
    feature_dup_df = pd.DataFrame(data=old_feature_name_df.groupby('column_name').cumcount(),
                                  columns=['dup_cnt'])
    feature_dup_df = feature_dup_df.reset_index()
    new_feature_name_df = pd.merge(old_feature_name_df.reset_index(),feature_dup_df,how='outer')
    new_feature_name_df['column_name']=new_feature_name_df[['column_name','dup_cnt']].apply(lambda x:x[0]+'_'+str(x[1])
                                                                                           if x[1]>0 else x[0],axis=1)
    new_feature_name_df = new_feature_name_df.drop(['index'],axis=1)
    return new_feature_name_df

get_new_feature_name_df(feature_name_df)

def get_human_dataset( ):
    
    # 각 데이터 파일들은 공백으로 분리되어 있으므로 read_csv에서 공백 문자를 sep으로 할당.
    feature_name_df = pd.read_csv('./human_activity/features.txt',sep='\s+',
                        header=None,names=['column_index','column_name'])
    new_feature_name_df = get_new_feature_name_df(feature_name_df)
    # DataFrame에 피처명을 컬럼으로 부여하기 위해 리스트 객체로 다시 변환
    feature_name = new_feature_name_df.iloc[:, 1].values.tolist()
    
    # 학습 피처 데이터 셋과 테스트 피처 데이터을 DataFrame으로 로딩. 컬럼명은 feature_name 적용
    X_train = pd.read_csv('./human_activity/train/X_train.txt',sep='\s+', names=feature_name)
    X_test = pd.read_csv('./human_activity/test/X_test.txt',sep='\s+', names=feature_name)
    
    # 학습 레이블과 테스트 레이블 데이터을 DataFrame으로 로딩하고 컬럼명은 action으로 부여
    y_train = pd.read_csv('./human_activity/train/y_train.txt',sep='\s+',header=None,names=['action'])
    y_test = pd.read_csv('./human_activity/test/y_test.txt',sep='\s+',header=None,names=['action'])
    
    # 로드된 학습/테스트용 DataFrame을 모두 반환 
    return X_train, X_test, y_train, y_test

X_train, X_test, y_train, y_test = get_human_dataset( )

X_train.info()

y_train.info()

X_train.head(1)

y_train['action'].value_counts()

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

dt_clf = DecisionTreeClassifier(random_state=156)
dt_clf.fit(X_train,y_train)
pred = dt_clf.predict(X_test)
accuracy = accuracy_score(y_test,pred)
accuracy

dt_clf.get_params()

from sklearn.model_selection import GridSearchCV

params = {'max_depth':[6,8,10,12,16,20,24]}

grid_cv = GridSearchCV(dt_clf,param_grid=params, scoring='accuracy',cv=5, verbose=1)
grid_cv.fit(X_train,y_train)

grid_cv.best_params_

grid_cv.best_score_

pd.DataFrame(grid_cv.cv_results_)[['param_max_depth','mean_test_score']]

params = {'max_depth':[6,8,12],
         'min_samples_split':[12,14,16,24]}

grid_cv = GridSearchCV(dt_clf,param_grid=params, scoring='accuracy',cv=5, verbose=1)
grid_cv.fit(X_train,y_train)
grid_cv.best_params_

grid_cv.best_score_

pd.DataFrame(grid_cv.cv_results_).head(2)

pd.DataFrame(grid_cv.cv_results_)[['param_max_depth','mean_test_score']]

best_df_clf = grid_cv.best_estimator_

ascending=False 내림차순

pred = best_df_clf.predict(X_test)
accuracy = accuracy_score(y_test, pred)
accuracy

i_values = best_df_clf.feature_importances_
top20 = pd.Series(i_values, index=X_train.columns).sort_values(ascending=False)[:20]
import seaborn as sns
sns.barplot(x=top20, y=top20.index)
plt.show()

2.組み合わせ学習方法


VootingとBagging

一般的には、ソフトブラシはハードブラシよりも多く、ソフトブラシはよく塗られています.
import pandas as pd
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')

load_breast_cancer()

cancer = load_breast_cancer()

type(cancer.data)

data_df = pd.DataFrame(cancer.data,columns=cancer.feature_names)
data_df.head(2)

lr_clf = LogisticRegression()
knn_clf = KNeighborsClassifier()

vo_clf = VotingClassifier(estimators=[('LR',lr_clf),('KNN',knn_clf)],voting='soft')
X_train,X_test,y_train,y_test = train_test_split(cancer.data,
                                                 cancer.target,
                                                 test_size=0.2,
                                                 random_state=156)#test에 20% 학습에 80%
vo_clf.fit(X_train,y_train)
pred = vo_clf.predict(X_test)
accuracy_score(y_test,pred)

items = [lr_clf,knn_clf]
for item in items:
    item.fit(X_train, y_train)
    pred = item.predict(X_test)
    print(item.__class__.__name__)
    print(accuracy_score(y_test,pred))

from sklearn.ensemble import RandomForestClassifier

def get_new_feature_name_df(old_feature_name_df):
    feature_dup_df = pd.DataFrame(data=old_feature_name_df.groupby('column_name').cumcount(),
                                  columns=['dup_cnt'])
    feature_dup_df = feature_dup_df.reset_index()
    new_feature_name_df = pd.merge(old_feature_name_df.reset_index(),feature_dup_df,how='outer')
    new_feature_name_df['column_name']=new_feature_name_df[['column_name','dup_cnt']].apply(lambda x:x[0]+'_'+str(x[1])
                                                                                           if x[1]>0 else x[0],axis=1)
    new_feature_name_df = new_feature_name_df.drop(['index'],axis=1)
    return new_feature_name_df

def get_human_dataset( ):
    
    # 각 데이터 파일들은 공백으로 분리되어 있으므로 read_csv에서 공백 문자를 sep으로 할당.
    feature_name_df = pd.read_csv('./human_activity/features.txt',sep='\s+',
                        header=None,names=['column_index','column_name'])
    new_feature_name_df = get_new_feature_name_df(feature_name_df)
    # DataFrame에 피처명을 컬럼으로 부여하기 위해 리스트 객체로 다시 변환
    feature_name = new_feature_name_df.iloc[:, 1].values.tolist()
    
    # 학습 피처 데이터 셋과 테스트 피처 데이터을 DataFrame으로 로딩. 컬럼명은 feature_name 적용
    X_train = pd.read_csv('./human_activity/train/X_train.txt',sep='\s+', names=feature_name)
    X_test = pd.read_csv('./human_activity/test/X_test.txt',sep='\s+', names=feature_name)
    
    # 학습 레이블과 테스트 레이블 데이터을 DataFrame으로 로딩하고 컬럼명은 action으로 부여
    y_train = pd.read_csv('./human_activity/train/y_train.txt',sep='\s+',header=None,names=['action'])
    y_test = pd.read_csv('./human_activity/test/y_test.txt',sep='\s+',header=None,names=['action'])
    
    # 로드된 학습/테스트용 DataFrame을 모두 반환 
    return X_train, X_test, y_train, y_test

X_train, X_test, y_train, y_test = get_human_dataset( )

#0.9263657957244655(90) 0.9253478113335596(100) 0.9280624363759755(200)
rf_clf = RandomForestClassifier(random_state=0,n_estimators=300)
rf_clf.fit(X_train,y_train)
pred = rf_clf.predict(X_test)
accuracy = accuracy_score(y_test,pred)
accuracy

from sklearn.model_selection import GridSearchCV

params = {
    'n_estimators':[100],
    'max_depth':[6,8,10,12],
    'min_samples_leaf':[8,12,18],
    'min_samples_split':[8,16,20]
}

rf_clf = RandomForestClassifier(random_state=0,n_jobs=-1)
grid_cv = GridSearchCV(rf_clf,param_grid=params,cv=2,n_jobs=-1)
grid_cv.fit(X_train,y_train)
print(grid_cv.best_params_)
print(grid_cv.best_score_)

rf_clf1 = RandomForestClassifier(n_estimators=300,
                                max_depth=10,
                                min_samples_leaf=8,
                                min_samples_split=8,
                                random_state=0)
rf_clf1.fit(X_train,y_train)
pred = rf_clf1.predict(X_test)
accuracy_score(y_test,pred)

3. lightbgm


アナコンダヒントインストールコードconda install -c conda-forge lightgbmライトbmコードの整理
from lightgbm import LGBMClassifier

import pandas as pd
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

dataset = load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(dataset.data,
                                               dataset.target,
                                               test_size=0.2,
                                               random_state=156)
lgbm = LGBMClassifier(n_estimators=400)
evals=[(X_test,y_test)]
lgbm.fit(X_train,y_train,
         early_stopping_rounds=100,
         eval_metric='logloss',
         eval_set=evals,verbose=True)
pred = lgbm.predict(X_test)
pred_proba = lgbm.predict_proba(X_test)[:,1]

from sklearn.linear_model import LogisticRegression #Ctrl + Shift + - 커서를 기준으로 작업열 분리시킴

from sklearn.metrics import confusion_matrix,accuracy_score, precision_score, recall_score, f1_score, precision_recall_curve,roc_auc_score
def get_clf_eval(y_test,pred):
    confusion = confusion_matrix(y_test, pred)
    accuracy = accuracy_score(y_test,pred)
    precision = precision_score(y_test,pred)
    recall = recall_score(y_test,pred)
    f1 = f1_score(y_test,pred)
    roc_auc = roc_auc_score(y_test,pred)
    print('오차행렬')
    print(confusion)
    print(f'정확도:{accuracy:.4f} 정밀도:{precision:.4f} 재현율:{recall:.4f} F1:{f1:.4f} AUC{roc_auc:.4f}' )

get_clf_eval(y_test,pred)

from lightgbm import plot_importance
import matplotlib.pyplot as plt

fig,ax = plt.subplots()
plot_importance(lgbm,ax=ax)

4.回帰紹介


分析資料
#LinearRegression 클래스는 예측값과 실제 값의 RSS를 최소화해 
#OLS(Ordinary Least Squares)추정 방식으로 구현한 클래스이다.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_boston

boston = load_boston()

df = pd.DataFrame(boston.data,columns=boston.feature_names)

df['price'] = boston.target

df.head(2)

df.shape

df.info()

df.columns

lm_features = ['ZN', 'INDUS', 'NOX', 'RM', 'AGE','RAD','PTRATIO','LSTAT']
fig, axs = plt.subplots(figsize=(16,8),ncols=4, nrows=2)
for i, feature in enumerate(lm_features):
    row = int(i/4)
    col = i % 4
    sns.regplot(y='price', x=feature, data=df, ax=axs[row][col])

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score

y_target = df['price']
X_data = df.drop(['price'],axis=1)
X_train, X_test, y_train, y_test = train_test_split(X_data,y_target,test_size=0.3, random_state=156)
lr = LinearRegression()
lr.fit(X_train,y_train)
pred = lr.predict(X_test)
mse = mean_squared_error(y_test,pred)
rmse = np.sqrt(mse)
r2 = r2_score(y_test,pred)
print(f'mse:{mse:.3f} rmse:{rmse:.3f} r2:{r2:0.3f}')

lr.intercept_

lr.coef_

np.round(lr.coef_,1)

df.columns

from sklearn.model_selection import cross_val_score

result = cross_val_score(lr,X_data,y_target,scoring='neg_mean_squared_error',cv=5)

-1*result

np.sqrt(-1*result)

np.mean(np.sqrt(-1*result))