Boostcamper's TIL (15)
31456 ワード
Segmentation
1.FCNの限界
1)オブジェクトのサイズが大きすぎるか小さすぎると予測できません
2)ディテール消失の問題

2. FC DenseNet, Unet
1) Skip Connection?
2) FC DenseNet?

3) Unet?

3. DeepLab v1, DilatedNet
Receptive Fieldを拡張することで性能を向上させるモデル.
1) Receptive field?

Receptive Fieldを向上させる方法1
->Resolutionの観点から見ると

リカバリ範囲を向上させる方法2


2) DeepLab v1?
3) Architecture(DeepLab-LargeFOV)

def conv_relu(in_channels, out_channels, kernel_size=3, rate=1):
return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=rate, dilation=rate) # padding과 dilation을 같게
self.features1 = nn.Sequential(
conv_relu(3, 64, 3, 1),
conv_relu(64, 64, 3, 1),
nn.PaxPool2d(3, streide=2, padding=1) # 2x2 -> 3x3으로 변경, 입력이미지 1/2
)
self.features2 = nn.Sequential(
conv_relu(64, 128, 3, 1),
conv_relu(128, 128, 3, 1),
nn.PaxPool2d(3, streide=2, padding=1) # 입력이미지 1/4
)
self.features3 = nn.Sequential(
conv_relu(128, 256, 3, 1),
conv_relu(256, 256, 3, 1),
conv_relu(256, 256, 3, 1),
nn.PaxPool2d(3, streide=2, padding=1) # 입력이미지 1/8
)
self.features4 = nn.Sequential(
conv_relu(256, 512, 3, 1),
conv_relu(512, 512, 3, 1),
conv_relu(512, 512, 3, 1),
nn.PaxPool2d(3, streide=1, padding=1) # 이미지 사이즈 고정
)
self.features5 = nn.Sequential(
conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2),
nn.PaxPool2d(3, streide=1, padding=1),
nn.AvgPool2d(3, stride=1, padding=1) # 마지막 두 layer 크기 고정
)
self.classifier = nn.Sequential(
conv_relu(512, 1024, 3, rate=12),
nn.Dropout2d(0.5),
conv_relu(1204, 1024, 1, 1),
nn.Dropout2d(0.5),
nn.Conv2d(1024, num_classes, 1)
)
Bi-linear Interpolationリカバリサイズ
class DeepLabV1(nn.Module):
def __init__(self, backbone, classifier, upsampling=8):
super(DeepLabV1, self).__init__()
self.bacbone = backbone
self.classifier = classifier
self.upsampling = upsampling
def forward(self, x):
x = self.backbone(x) # conv1~conv5
_, _, feature_map_h, feature_map_w = x.size()
x = self.classifier(x)
x= torch.nn.F.interpolate(x, size=(feature_map_h * self.upsampling, feature_map_w * self.upsampling), mode="bilinear")
4) Bilinear Interpolation?

5) Dense CRF(Conditional Random Field)

色が近いピクセルが同じカテゴリにある場合
色が似ているが画素から遠い場合、同じカテゴリ
反復アプリケーション
6) DelatedNet?

conv 4とconv 5からMaxPoolとAvgPoolを削除
二重線形Interpolationを使用して元の寸法を回復し、アップグレードする必要はなく、Deボリュームを使用して元の寸法を回復する.
conv4
self.features4 = nn.Sequential(
conv_relu(256, 512, 3, 1),
conv_relu(512, 512, 3, 1),
conv_relu(512, 512, 3, 1),
)
self.features5 = nn.Sequential(
conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2),
)
class DilatedNetFron(nn.Module):
def __init__(self, backbone, classifier):
super(DilatedNetFront, self).__init__()
self.backbone = backbone
self.classifier = classifier
# deconv
self.deconv = nn.ConvTranspose2d(in_channels=11,
out_channels=11,
kernel_size=16,
stride=8,
padding=4)
def forward(self, x):
x = self.backbone(x)
x = self.classifier(x)
out = self.deconv(x)
return out
7) DilatedNet(Front + Basic Context module)
class BasicContextModule(nn.Module):
def __init__(self, num_classes):
super(BasicContextModule, self).__init__()
self.layer1 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
self.layer2 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
self.layer3 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 2))
self.layer4 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 4))
self.layer5 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 8))
self.layer6 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 16))
self.layer7 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
self.layer8 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
4. Implementation
5. Reference
https://arxiv.org/abs/1505.04366 ("Learning Deconvolution Network for Semantic Segmentation")
https://arxiv.org/abs/1611.09326 ("The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation")
https://arxiv.org/abs/1505.04597 ("U-Net: Convolutional Networks for Biomedical Image Segmentation")
https://arxiv.org/abs/1606.00915 ("DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs")
Reference
この問題について(Boostcamper's TIL (15)), 我々は、より多くの情報をここで見つけました
https://velog.io/@choihj94/Boostcampers-TIL-15
テキストは自由に共有またはコピーできます。ただし、このドキュメントのURLは参考URLとして残しておいてください。
Collection and Share based on the CC Protocol
https://arxiv.org/abs/1505.04366 ("Learning Deconvolution Network for Semantic Segmentation")
https://arxiv.org/abs/1611.09326 ("The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation")
https://arxiv.org/abs/1505.04597 ("U-Net: Convolutional Networks for Biomedical Image Segmentation")
https://arxiv.org/abs/1606.00915 ("DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs")
Reference
この問題について(Boostcamper's TIL (15)), 我々は、より多くの情報をここで見つけました https://velog.io/@choihj94/Boostcampers-TIL-15テキストは自由に共有またはコピーできます。ただし、このドキュメントのURLは参考URLとして残しておいてください。
Collection and Share based on the CC Protocol