Python爬虫類(四):新たに縦横中国語網爬虫類Demoを追加--136冊の本屋小説を爬取し、ローカルテキストファイルに保存し、単一プロセスの多プロセス対比効率(三生三世十里桃花を例に)
運転環境:反爬が存在し、爬虫類の運行ミスを招き、以下の2つの方法で親測して解決することができる. は、ブラウザアクセスによって生成された
この爬虫類は、 を正確につかむことができない.
概要小说网址: 136 book小説網の具体的な小説のurlを修正することによって、異なる小説の章を登って を大量にダウンロードする.このコードは三生三世十里桃花を例に(リンク) –>
運行効果の展示は図が切れたようです
①
単プロセス保存小説章
②
マルチプロセス保存小説章の実行中、タスクマネージャでは
Python3.6
2019-05-24更新、既存のページが改版されたため、現在「縦横中国語網book.zongheng.com
」採集コードDemoが追加された. IP
に加入し、 IP
抽出インタフェース->ジャンプを書きました.Cookie
情報をheaders
に追加する.VIP
がアクセスできるコンテンツ# -*- coding: utf-8 -*-
# @Author : Leo
import re
import os
import logging
import requests
from bs4 import BeautifulSoup
from requests.adapters import HTTPAdapter
logging.basicConfig(level=logging.INFO, #
format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt='%a, %d %b %Y %H:%M:%S')
class ZonghengSpider:
"""
- http://book.zongheng.com/
"""
#
novel_save_dir = 'novels'
session = requests.session()
#
session.mount('http://', HTTPAdapter(max_retries=3))
session.mount('https://', HTTPAdapter(max_retries=3))
def __init__(self):
self.session.headers.update(
{'Host': 'book.zongheng.com',
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_5) '
'AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.157 Safari/537.36'})
self.chapter_url = 'http://book.zongheng.com/api/chapter/chapterinfo?bookId={book_id}&chapterId={chapter_id}'
def crawl(self, target_url: str):
"""
url
:param target_url: URL
:return:
"""
def request_url(url):
resp = self.session.get(url=url)
if resp.status_code == 200:
return resp.json()
else:
return None
book_name, book_id, chapter_id = self.get_page_info(target_url)
logging.info(f' : {book_name}, ID: {book_id}, ID: {chapter_id}')
if all([book_name, book_id, chapter_id]):
#
novel_save_path = os.path.join(self.novel_save_dir, book_name)
if not os.path.exists(novel_save_path):
os.makedirs(novel_save_path)
logging.info(f' : {novel_save_path}')
index = 0
while True:
index += 1
chapter_url = self._get_chapter_url(book_id, chapter_id)
logging.info(f' URL: {chapter_url}')
chapter_json = request_url(url=chapter_url)
if chapter_json is not None:
chapter_data = chapter_json.get('data')
if not chapter_data:
break
#
chapter_name = chapter_data.get('chapterName')
content_raw = chapter_data.get('content', '')
#
clear_content = '
'.join(
[repr(p).strip('\'') for p in BeautifulSoup(content_raw, 'html.parser').strings])
# TODO 、 、 ...
with open(os.path.join(novel_save_path, str(index) + '-' + chapter_name + '.txt'), 'w',
encoding='utf8') as f:
f.write(clear_content)
logging.info(' > %s' % os.path.join(novel_save_path, str(index) + '-' + chapter_name))
# chapter_id
chapter_id = chapter_data.get('nexCid')
else:
logging.error(f' URL , URL: {chapter_url}')
logging.info(' ')
def get_page_info(self, homepage_url):
"""
book-id, ID
:param homepage_url: url
:return:
"""
resp = self.session.get(url=homepage_url)
if resp.status_code == 200:
soup = BeautifulSoup(resp.text, 'html.parser')
book_name = soup.find('div', {'class': 'book-name'}).get_text().strip()
first_chapter_tag = soup.find('a', {'class': 'btn read-btn', 'href': True})
if first_chapter_tag is not None:
first_chapter_url = first_chapter_tag.get('href')
result = re.findall(r'chapter/(\d+)/(\d+).html', first_chapter_url)
book_id, chapter_id = result[0] if result else (None, None, None)
return book_name, book_id, chapter_id
else:
logging.error(' !')
return None, None, None
def _get_chapter_url(self, book_id, chapter_id):
"""
:param book_id:
:param chapter_id:
:return:
"""
return self.chapter_url.format(book_id=book_id, chapter_id=chapter_id)
if __name__ == '__main__':
spider = ZonghengSpider()
spider.crawl(target_url='http://book.zongheng.com/book/840152.html')
概要
http://www.136book.com/
http://www.136book.com/sanshengsanshimenglitaohua/
運行効果の展示は図が切れたようです
①
book136_singleprocess.py
単プロセス保存小説章
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : Woolei
# @File : book136_singleprocess.py
import requests
import time
import os
from bs4 import BeautifulSoup
headers = {
'User-Agent':
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36'
}
# ,
def getChapterContent(each_chapter_dict):
content_html = requests.get(each_chapter_dict['chapter_url'], headers=headers).text
soup = BeautifulSoup(content_html, 'lxml')
content_tag = soup.find('div', {'id': 'content'})
p_tag = content_tag.find_all('p')
print(' --> ' + each_chapter_dict['name'])
for each in p_tag:
paragraph = each.get_text().strip()
with open(each_chapter_dict['name'] + r'.txt', 'a', encoding='utf8') as f:
f.write(' ' + paragraph + '
')
f.close()
# url
def getChapterInfo(novel_url):
chapter_html = requests.get(novel_url, headers=headers).text
soup = BeautifulSoup(chapter_html, 'lxml')
chapter_list = soup.find_all('li')
chapter_all_dict = {}
for each in chapter_list:
import re
chapter_each = {}
chapter_each['name'] = each.find('a').get_text() #
chapter_each['chapter_url'] = each.find('a')['href'] # url
chapter_num = int(re.findall('\d+', each.get_text())[0]) #
chapter_all_dict[chapter_num] = chapter_each #
return chapter_all_dict
if __name__ == '__main__':
start = time.clock() #
novel_url = 'http://www.136book.com/sanshengsanshimenglitaohua/' #
novel_info = getChapterInfo(novel_url) #
dir_name = ' '
if not os.path.exists(dir_name):
os.mkdir(dir_name)
os.chdir(dir_name) #
for each in novel_info:
getChapterContent(novel_info[each])
# time.sleep(1)
end = time.clock() #
print(' , %d , :%f s' % (len(novel_info), (end - start)))
** , 。 **
②
book136_multiprocess.py
マルチプロセス保存小説章
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : Woolei
# @File : book136_2.py
import requests
import time
import os
from bs4 import BeautifulSoup
from multiprocessing import Pool
url = 'http://www.136book.com/huaqiangu/ebxeeql/'
headers = {
'User-Agent':
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36'
}
# ,
def getChapterContent(each_chapter_dict):
content_html = requests.get(each_chapter_dict['chapter_url'], headers=headers).text
soup = BeautifulSoup(content_html, 'lxml')
content_tag = soup.find('div', {'id': 'content'})
p_tag = content_tag.find_all('p')
print(' --> ' + each_chapter_dict['name'])
for each in p_tag:
paragraph = each.get_text().strip()
with open(each_chapter_dict['name'] + r'.txt', 'a', encoding='utf8') as f:
f.write(' ' + paragraph + '
')
f.close()
# url
def getChapterInfo(novel_url):
chapter_html = requests.get(novel_url, headers=headers).text
soup = BeautifulSoup(chapter_html, 'lxml')
chapter_list = soup.find_all('li')
chapter_all_dict = {}
for each in chapter_list:
import re
chapter_each = {}
chapter_each['name'] = each.find('a').get_text() #
chapter_each['chapter_url'] = each.find('a')['href'] # url
chapter_num = int(re.findall('\d+', each.get_text())[0]) #
chapter_all_dict[chapter_num] = chapter_each #
return chapter_all_dict
if __name__ == '__main__':
start = time.clock()
novel_url = 'http://www.136book.com/sanshengsanshimenglitaohua/'
novel_info = getChapterInfo(novel_url)
dir_name = ' '
if not os.path.exists(dir_name):
os.mkdir(dir_name)
os.chdir(dir_name)
pool = Pool(processes=10) # 10
pool.map(getChapterContent, [novel_info[each] for each in novel_info])
pool.close()
pool.join()
end = time.clock()
print(' , %d , :%f s' % (len(novel_info), (end - start)))
10
のサブプロセス(processes=10)
が作成され、効率を向上させるために複数のプロセスを作成することができますが、コンピュータのパフォーマンスを考慮せずに過剰なプロセスを作成すると、コンピュータの実行効率が大幅に低下します.