import torch
import torch.nn.functional as F #
import matplotlib.pyplot as plt #
from torch.autograd import Variable
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) #
y = x.pow(2) + 0.2 * torch.rand(x.size())
x, y = Variable(x), Variable(y) # Variable
# plt.scatter(x.data.numpy(), y.data.numpy()) #
# plt.show()
class Net(torch.nn.Module): #
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__() #
self.hidden = torch.nn.Linear(n_feature, n_hidden) #
self.predict = torch.nn.Linear(n_hidden, n_output) #
def forward(self, x):
x = F.relu(self.hidden(x)) #
x = self.predict(x) #
return x
model = Net(n_feature=1, n_hidden=10, n_output=1) #
loss_func = torch.nn.MSELoss() #
optimizer = torch.optim.SGD(model.parameters(), lr=0.1) #
plt.ion()
for t in range(1000): # 1000
prediction = model(x) # input x and predict based on x
loss = loss_func(prediction, y) # X (x1, x2,...), (y1, y2,...)
optimizer.zero_grad() # 0
loss.backward() #
optimizer.step() # apply gradients
if t % 5 == 0:
plt.cla() #
plt.scatter(x.data.numpy(), y.data.numpy()) #
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data[0], fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()