matplotダイナミック描画アニメーションの例
10個の乱数
バンドストップ
csvインポートバンドから一時停止
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
fig = plt.figure()
axes1 = fig.add_subplot(111)
line, = axes1.plot(np.random.rand(10))
# update data_gen,
# framenum
def update(data):
line.set_ydata(data)
return line,
# 10
def data_gen():
while True:
yield np.random.rand(10)
ani = animation.FuncAnimation(fig, update, data_gen, interval=2*1000)
plt.show()
バンドストップ
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.animation as animation
pause = False
def simData():
t_max = 10.0
dt = 0.05
x = 0.0
t = 0.0
while t < t_max:
if not pause:
x = np.sin(np.pi*t)
t = t + dt
yield t, x
def onClick(event):
global pause
pause ^= True
def simPoints(simData):
t, x = simData[0], simData[1]
time_text.set_text(time_template%(t))
line.set_data(t, x)
return line, time_text
fig = plt.figure()
ax = fig.add_subplot(111)
line, = ax.plot([], [], 'bo', ms=10) # I'm still not clear on this stucture...
ax.set_ylim(-1, 1)
ax.set_xlim(0, 10)
time_template = 'Time = %.1f s' # prints running simulation time
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
fig.canvas.mpl_connect('button_press_event', onClick)
ani = animation.FuncAnimation(fig, simPoints, simData, blit=False, interval=10,
repeat=True)
plt.show()
csvインポートバンドから一時停止
# -*- coding: utf-8 -*-
"""
Spyder Editor
This temporary script file is located here:
C:\Users\user\.spyder2\.temp.py
"""
"""
Show how to modify the coordinate formatter to report the image "z"
value of the nearest pixel given x and y
"""
# coding: utf-8
import time
import string
import os
import math
import pylab
import numpy as np
from numpy import genfromtxt
import matplotlib
import matplotlib as mpl
from matplotlib.colors import LogNorm
from matplotlib.mlab import bivariate_normal
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.animation as animation
pause = False
linenum=0
metric = genfromtxt('D:\export.csv', delimiter=',')
lines=len(metric)
#print len(metric)
#print len(metric[4])
#print metric[4]
rowdatas=metric[:,0]
for index in range(len(metric[4])-1):
a=metric[:,index+1]
rowdatas=np.row_stack((rowdatas,a))
#print len(rowdatas)
#print len(rowdatas[4])
#print rowdatas[4]
#
#plt.figure(figsize=(38,38), dpi=80)
#plt.plot(rowdatas[4] )
#plt.xlabel('time')
#plt.ylabel('value')
#plt.title("USBHID data analysis")
#plt.show()
## list, list , metric[0],metric[1],...
listdata=rowdatas.tolist()
print listdata[4]
#fig = plt.figure()
#window = fig.add_subplot(111)
#line, = window.plot(listdata[4] )
#plt.ion()
#fig, ax = plt.subplots()
#line, = ax.plot(listdata[4],lw=2)
#ax.grid()
fig = plt.figure()
ax = fig.add_subplot(111)
line, = ax.plot(listdata[4],lw=2 ) # I'm still not clear on this stucture...
ax.grid()
time_template = 'Data ROW = %d'
time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
#ax = plt.axes(xlim=(0, 700), ylim=(0, 255))
#line, = ax.plot([], [], lw=2)
def onClick(event):
global pause
pause ^= True
print 'user click the mouse!'
print 'you pressed', event.button, event.xdata, event.ydata
# event.button=1 2 3
def getData():
global listdata
global linenum
t = 0
while t < len(listdata[4]):
if not pause:
linenum=linenum+1
yield listdata[linenum-1]
# while t < len(listdata[4]):
# t = t + 1
# print t,t
# yield t, t
def update(data):
global linenum
line.set_ydata(data)
time_text.set_text(time_template % (linenum))
return line,
def init():
# ax.set_ylim(0, 1.1)
# ax.set_xlim(0, 10)
# line.set_data(xdata)
plt.xlabel('time')
plt.ylabel('Time')
plt.title('USBHID Data analysis')
return line,
fig.canvas.mpl_connect('button_press_event', onClick)
ani = animation.FuncAnimation(fig, update , getData , blit=False, interval=1*1000,init_func=init,repeat=False)
plt.show()
#my_data = genfromtxt('D:\export.csv', delimiter=',')
#rgbdata=my_data、255
#plt.figure(figsize=(38,38), dpi=80)
#
#for index in range(3):
# row9=rgbdata[:,index]
# print "row %d size is
"%(index)
# plt.plot(row9 )
# plt.xlabel('time')
# plt.ylabel('value')
# plt.title("USBHID data analysis")
# plt.legend()
## plt.cla()
## plt.clf()
#plt.show()
#plt.figure(1)
#plt.imshow(rgbdata, interpolation='nearest')
#plt.grid(True)
#fig = plt.figure() # 0
#plt.savefig() #
#plt.close('all') # 0