(Problem 34)Digit factorials
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
Note: as 1! = 1 and 2! = 2 are not sums they are not included.
テーマ:
145は変な数字で、1!+4! + 5! = 1 + 24 + 120 = 145.
各数字の階乗の和に等しいすべての数字の和を見つけます.
注意:1!=1と2!=2は和の形式ではないので、それらは含まれません.
Answer:
40730
Find the sum of all numbers which are equal to the sum of the factorial of their digits.
Note: as 1! = 1 and 2! = 2 are not sums they are not included.
テーマ:
145は変な数字で、1!+4! + 5! = 1 + 24 + 120 = 145.
各数字の階乗の和に等しいすべての数字の和を見つけます.
注意:1!=1と2!=2は和の形式ではないので、それらは含まれません.
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<ctype.h>
#include<stdlib.h>
#include<stdbool.h>
int factorial(int n) //
{
if(n==1 || n==0) return 1;
else return n*factorial(n-1);
}
bool judge(int n) //
{
char s[10];
sprintf(s,"%d",n);
int len=strlen(s);
int sum=0;
for(int i=0; i<len; i++)
{
sum+=factorial(s[i]-'0');
}
if(n==sum) return true;
else return false;
}
int main()
{
int sum=0;
for(int i=3; i<1000000; i++)
{
if(judge(i))
sum+=i;
}
printf("%d
",sum);
return 0;
}
Answer:
40730