MD 5とSHA 1アルゴリズムのC++実装と使用


MD 5アルゴリズム:
MD5.H
#ifndef MD5_H
#define MD5_H


typedef struct
{
  unsigned int count[2];
  unsigned int state[4];
  unsigned char buffer[64];
} MD5_CTX;

#define F(x,y,z) ((x & y) | (~x & z))
#define G(x,y,z) ((x & z) | (y & ~z))
#define H(x,y,z) (x^y^z)
#define I(x,y,z) (y ^ (x | ~z))
#define ROTATE_LEFT(x,n) ((x << n) | (x >> (32-n)))

#define FF(a,b,c,d,x,s,ac) \
{ \
  a += F(b,c,d) + x + ac; \
  a = ROTATE_LEFT(a,s); \
  a += b; \
}
#define GG(a,b,c,d,x,s,ac) \
{ \
  a += G(b,c,d) + x + ac; \
  a = ROTATE_LEFT(a,s); \
  a += b; \
}
#define HH(a,b,c,d,x,s,ac) \
{ \
  a += H(b,c,d) + x + ac; \
  a = ROTATE_LEFT(a,s); \
  a += b; \
}
#define II(a,b,c,d,x,s,ac) \
{ \
  a += I(b,c,d) + x + ac; \
  a = ROTATE_LEFT(a,s); \
  a += b; \
}
void MD5Init(MD5_CTX *context);
void MD5Update(MD5_CTX *context, unsigned char *input, unsigned int inputlen);
void MD5Final(MD5_CTX *context, unsigned char digest[16]);
void MD5Transform(unsigned int state[4], unsigned char block[64]);
void MD5Encode(unsigned char *output, unsigned int *input, unsigned int len);
void MD5Decode(unsigned int *output, unsigned char *input, unsigned int len);

#endif

MD5.CPP
#include "md5.h"
#include 
#include 
#include 
#include
unsigned char PADDING[] =
{
  0x80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};

void MD5Init(MD5_CTX *context)
{
  context->count[0] = 0;
  context->count[1] = 0;
  context->state[0] = 0x67452301;
  context->state[1] = 0xEFCDAB89;
  context->state[2] = 0x98BADCFE;
  context->state[3] = 0x10325476;
}

void MD5Update(MD5_CTX *context, unsigned char *input, unsigned int inputlen)
{
  unsigned int i = 0;
  unsigned int index = 0;
  unsigned int partlen = 0;

  index = (context->count[0] >> 3) & 0x3F;
  partlen = 64 - index;
  context->count[0] += inputlen << 3;

  if(context->count[0] < (inputlen << 3))
    context->count[1]++;
  context->count[1] += inputlen >> 29;

  if(inputlen >= partlen)
  {
    memcpy(&context->buffer[index], input,partlen);
    MD5Transform(context->state, context->buffer);

    for(i = partlen; i+64 <= inputlen; i+=64)
      MD5Transform(context->state, &input[i]);

    index = 0;
  }
  else
  {
    i = 0;
  }
  memcpy(&context->buffer[index], &input[i], inputlen-i);
}

void MD5Final(MD5_CTX *context, unsigned char digest[16])
{
  unsigned int index = 0,padlen = 0;
  unsigned char bits[8];

  index = (context->count[0] >> 3) & 0x3F;
  padlen = (index < 56)?(56-index):(120-index);
  MD5Encode(bits, context->count, 8);
  MD5Update(context, PADDING, padlen);
  MD5Update(context, bits, 8);
  MD5Encode(digest, context->state, 16);
}

void MD5Encode(unsigned char *output,unsigned int *input,unsigned int len)
{
  unsigned int i = 0;
  unsigned int j = 0;

  while(j < len)
  {
    output[j] = input[i] & 0xFF;
    output[j+1] = (input[i] >> 8) & 0xFF;
    output[j+2] = (input[i] >> 16) & 0xFF;
    output[j+3] = (input[i] >> 24) & 0xFF;
    i++;
    j += 4;
  }
}

void MD5Decode(unsigned int *output, unsigned char *input, unsigned int len)
{
  unsigned int i = 0;
  unsigned int j = 0;

  while(j < len)
  {
    output[i] = (input[j]) |
      (input[j+1] << 8) |
      (input[j+2] << 16) |
      (input[j+3] << 24);
    i++;
    j += 4;
  }
}

void MD5Transform(unsigned int state[4], unsigned char block[64])
{
  unsigned int a = state[0];
  unsigned int b = state[1];
  unsigned int c = state[2];
  unsigned int d = state[3];
  unsigned int x[64];

  MD5Decode(x,block,64);

  FF(a, b, c, d, x[ 0], 7, 0xd76aa478); /* 1 */
  FF(d, a, b, c, x[ 1], 12, 0xe8c7b756); /* 2 */
  FF(c, d, a, b, x[ 2], 17, 0x242070db); /* 3 */
  FF(b, c, d, a, x[ 3], 22, 0xc1bdceee); /* 4 */
  FF(a, b, c, d, x[ 4], 7, 0xf57c0faf); /* 5 */
  FF(d, a, b, c, x[ 5], 12, 0x4787c62a); /* 6 */
  FF(c, d, a, b, x[ 6], 17, 0xa8304613); /* 7 */
  FF(b, c, d, a, x[ 7], 22, 0xfd469501); /* 8 */
  FF(a, b, c, d, x[ 8], 7, 0x698098d8); /* 9 */
  FF(d, a, b, c, x[ 9], 12, 0x8b44f7af); /* 10 */
  FF(c, d, a, b, x[10], 17, 0xffff5bb1); /* 11 */
  FF(b, c, d, a, x[11], 22, 0x895cd7be); /* 12 */
  FF(a, b, c, d, x[12], 7, 0x6b901122); /* 13 */
  FF(d, a, b, c, x[13], 12, 0xfd987193); /* 14 */
  FF(c, d, a, b, x[14], 17, 0xa679438e); /* 15 */
  FF(b, c, d, a, x[15], 22, 0x49b40821); /* 16 */

  /* Round 2 */
  GG(a, b, c, d, x[ 1], 5, 0xf61e2562); /* 17 */
  GG(d, a, b, c, x[ 6], 9, 0xc040b340); /* 18 */
  GG(c, d, a, b, x[11], 14, 0x265e5a51); /* 19 */
  GG(b, c, d, a, x[ 0], 20, 0xe9b6c7aa); /* 20 */
  GG(a, b, c, d, x[ 5], 5, 0xd62f105d); /* 21 */
  GG(d, a, b, c, x[10], 9,  0x2441453); /* 22 */
  GG(c, d, a, b, x[15], 14, 0xd8a1e681); /* 23 */
  GG(b, c, d, a, x[ 4], 20, 0xe7d3fbc8); /* 24 */
  GG(a, b, c, d, x[ 9], 5, 0x21e1cde6); /* 25 */
  GG(d, a, b, c, x[14], 9, 0xc33707d6); /* 26 */
  GG(c, d, a, b, x[ 3], 14, 0xf4d50d87); /* 27 */
  GG(b, c, d, a, x[ 8], 20, 0x455a14ed); /* 28 */
  GG(a, b, c, d, x[13], 5, 0xa9e3e905); /* 29 */
  GG(d, a, b, c, x[ 2], 9, 0xfcefa3f8); /* 30 */
  GG(c, d, a, b, x[ 7], 14, 0x676f02d9); /* 31 */
  GG(b, c, d, a, x[12], 20, 0x8d2a4c8a); /* 32 */

  /* Round 3 */
  HH(a, b, c, d, x[ 5], 4, 0xfffa3942); /* 33 */
  HH(d, a, b, c, x[ 8], 11, 0x8771f681); /* 34 */
  HH(c, d, a, b, x[11], 16, 0x6d9d6122); /* 35 */
  HH(b, c, d, a, x[14], 23, 0xfde5380c); /* 36 */
  HH(a, b, c, d, x[ 1], 4, 0xa4beea44); /* 37 */
  HH(d, a, b, c, x[ 4], 11, 0x4bdecfa9); /* 38 */
  HH(c, d, a, b, x[ 7], 16, 0xf6bb4b60); /* 39 */
  HH(b, c, d, a, x[10], 23, 0xbebfbc70); /* 40 */
  HH(a, b, c, d, x[13], 4, 0x289b7ec6); /* 41 */
  HH(d, a, b, c, x[ 0], 11, 0xeaa127fa); /* 42 */
  HH(c, d, a, b, x[ 3], 16, 0xd4ef3085); /* 43 */
  HH(b, c, d, a, x[ 6], 23,  0x4881d05); /* 44 */
  HH(a, b, c, d, x[ 9], 4, 0xd9d4d039); /* 45 */
  HH(d, a, b, c, x[12], 11, 0xe6db99e5); /* 46 */
  HH(c, d, a, b, x[15], 16, 0x1fa27cf8); /* 47 */
  HH(b, c, d, a, x[ 2], 23, 0xc4ac5665); /* 48 */

  /* Round 4 */
  II(a, b, c, d, x[ 0], 6, 0xf4292244); /* 49 */
  II(d, a, b, c, x[ 7], 10, 0x432aff97); /* 50 */
  II(c, d, a, b, x[14], 15, 0xab9423a7); /* 51 */
  II(b, c, d, a, x[ 5], 21, 0xfc93a039); /* 52 */
  II(a, b, c, d, x[12], 6, 0x655b59c3); /* 53 */
  II(d, a, b, c, x[ 3], 10, 0x8f0ccc92); /* 54 */
  II(c, d, a, b, x[10], 15, 0xffeff47d); /* 55 */
  II(b, c, d, a, x[ 1], 21, 0x85845dd1); /* 56 */
  II(a, b, c, d, x[ 8], 6, 0x6fa87e4f); /* 57 */
  II(d, a, b, c, x[15], 10, 0xfe2ce6e0); /* 58 */
  II(c, d, a, b, x[ 6], 15, 0xa3014314); /* 59 */
  II(b, c, d, a, x[13], 21, 0x4e0811a1); /* 60 */
  II(a, b, c, d, x[ 4], 6, 0xf7537e82); /* 61 */
  II(d, a, b, c, x[11], 10, 0xbd3af235); /* 62 */
  II(c, d, a, b, x[ 2], 15, 0x2ad7d2bb); /* 63 */
  II(b, c, d, a, x[ 9], 21, 0xeb86d391); /* 64 */
  state[0] += a;
  state[1] += b;
  state[2] += c;
  state[3] += d;
}

ファイルのMD 5値の実装と基本的な使用を取得
インプリメンテーション
int GetFileMD5(const char* filePath, char* strMD5)
{
	int i;
	int fd;
	int ret;
	unsigned char data[READ_DATA_SIZE];
	unsigned char md5_value[MD5_SIZE];
	MD5_CTX md5;

	fd = open(filePath, O_RDONLY);
	if (-1 == fd)
	{
		perror("open");
		return -1;
	}

	// init md5
	MD5Init(&md5);

	while (1)
	{
		ret = read(fd, data, READ_DATA_SIZE);
		if (-1 == ret)
		{
			perror("read");
			close(fd);
			return -1;
		}

		MD5Update(&md5, data, ret);

		if (0 == ret || ret < READ_DATA_SIZE)
		{
			break;
		}
	}

	close(fd);

	MD5Final(&md5, md5_value);

	for (i = 0; i < MD5_SIZE; i++)
	{
		snprintf(strMD5 + i * 2, 2 + 1, "%02x", md5_value[i]);
	}
	strMD5[MD5_STR_LEN] = '\0'; // add end
	return 0;
}

呼び出し:
char backfile_md5_str[33];
GetFileMD5(m_strBackupFile.c_str(), backfile_md5_str);

SHA 1アルゴリズムの実装と基本的な使用
SHA1.h
/*
  100% free public domain implementation of the SHA-1 algorithm
  by Dominik Reichl 
  Web: http://www.dominik-reichl.de/

  Version 2.1 - 2012-06-19
  - Deconstructor (resetting internal variables) is now only
    implemented if SHA1_WIPE_VARIABLES is defined (which is the
    default).
  - Renamed inclusion guard to contain a GUID.
  - Demo application is now using C++/STL objects and functions.
  - Unicode build of the demo application now outputs the hashes of both
    the ANSI and Unicode representations of strings.
  - Various other demo application improvements.

  Version 2.0 - 2012-06-14
  - Added 'limits.h' include.
  - Renamed inclusion guard and macros for compliancy (names beginning
    with an underscore are reserved).

  Version 1.9 - 2011-11-10
  - Added Unicode test vectors.
  - Improved support for hashing files using the HashFile method that
    are larger than 4 GB.
  - Improved file hashing performance (by using a larger buffer).
  - Disabled unnecessary compiler warnings.
  - Internal variables are now private.

  Version 1.8 - 2009-03-16
  - Converted project files to Visual Studio 2008 format.
  - Added Unicode support for HashFile utility method.
  - Added support for hashing files using the HashFile method that are
    larger than 2 GB.
  - HashFile now returns an error code instead of copying an error
    message into the output buffer.
  - GetHash now returns an error code and validates the input parameter.
  - Added ReportHashStl STL utility method.
  - Added REPORT_HEX_SHORT reporting mode.
  - Improved Linux compatibility of test program.

  Version 1.7 - 2006-12-21
  - Fixed buffer underrun warning that appeared when compiling with
    Borland C Builder (thanks to Rex Bloom and Tim Gallagher for the
    patch).
  - Breaking change: ReportHash writes the final hash to the start
    of the buffer, i.e. it's not appending it to the string anymore.
  - Made some function parameters const.
  - Added Visual Studio 2005 project files to demo project.

  Version 1.6 - 2005-02-07 (thanks to Howard Kapustein for patches)
  - You can set the endianness in your files, no need to modify the
    header file of the CSHA1 class anymore.
  - Aligned data support.
  - Made support/compilation of the utility functions (ReportHash and
    HashFile) optional (useful when bytes count, for example in embedded
    environments).

  Version 1.5 - 2005-01-01
  - 64-bit compiler compatibility added.
  - Made variable wiping optional (define SHA1_WIPE_VARIABLES).
  - Removed unnecessary variable initializations.
  - ROL32 improvement for the Microsoft compiler (using _rotl).

  Version 1.4 - 2004-07-22
  - CSHA1 now compiles fine with GCC 3.3 under Mac OS X (thanks to Larry
    Hastings).

  Version 1.3 - 2003-08-17
  - Fixed a small memory bug and made a buffer array a class member to
    ensure correct working when using multiple CSHA1 class instances at
    one time.

  Version 1.2 - 2002-11-16
  - Borlands C++ compiler seems to have problems with string addition
    using sprintf. Fixed the bug which caused the digest report function
    not to work properly. CSHA1 is now Borland compatible.

  Version 1.1 - 2002-10-11
  - Removed two unnecessary header file includes and changed BOOL to
    bool. Fixed some minor bugs in the web page contents.

  Version 1.0 - 2002-06-20
  - First official release.

  ================ Test Vectors ================

  SHA1("abc" in ANSI) =
    A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
  SHA1("abc" in Unicode LE) =
    9F04F41A 84851416 2050E3D6 8C1A7ABB 441DC2B5

  SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
    in ANSI) =
    84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
  SHA1("abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
    in Unicode LE) =
    51D7D876 9AC72C40 9C5B0E3F 69C60ADC 9A039014

  SHA1(A million repetitions of "a" in ANSI) =
    34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
  SHA1(A million repetitions of "a" in Unicode LE) =
    C4609560 A108A0C6 26AA7F2B 38A65566 739353C5
*/

#ifndef SHA1_H_A545E61D43E9404E8D736869AB3CBFE7
#define SHA1_H_A545E61D43E9404E8D736869AB3CBFE7

#if !defined(SHA1_UTILITY_FUNCTIONS) && !defined(SHA1_NO_UTILITY_FUNCTIONS)
#define SHA1_UTILITY_FUNCTIONS
#endif

#if !defined(SHA1_STL_FUNCTIONS) && !defined(SHA1_NO_STL_FUNCTIONS)
#define SHA1_STL_FUNCTIONS
#if !defined(SHA1_UTILITY_FUNCTIONS)
#error STL functions require SHA1_UTILITY_FUNCTIONS.
#endif
#endif

#include 
#include 

#ifdef SHA1_UTILITY_FUNCTIONS
#include 
#include 
#endif

#ifdef SHA1_STL_FUNCTIONS
#include 
#endif

#ifdef _MSC_VER
#include 
#endif

// You can define the endian mode in your files without modifying the SHA-1
// source files. Just #define SHA1_LITTLE_ENDIAN or #define SHA1_BIG_ENDIAN
// in your files, before including the SHA1.h header file. If you don't
// define anything, the class defaults to little endian.
#if !defined(SHA1_LITTLE_ENDIAN) && !defined(SHA1_BIG_ENDIAN)
#define SHA1_LITTLE_ENDIAN
#endif

// If you want variable wiping, #define SHA1_WIPE_VARIABLES, if not,
// #define SHA1_NO_WIPE_VARIABLES. If you don't define anything, it
// defaults to wiping.
#if !defined(SHA1_WIPE_VARIABLES) && !defined(SHA1_NO_WIPE_VARIABLES)
#define SHA1_WIPE_VARIABLES
#endif

#if defined(SHA1_HAS_TCHAR)
#include 
#else
#ifdef _MSC_VER
#include 
#else
#ifndef TCHAR
#define TCHAR char
#endif
#ifndef _T
#define _T(__x) (__x)
#define _tmain main
#define _tprintf printf
#define _getts gets
#define _tcslen strlen
#define _tfopen fopen
#define _tcscpy strcpy
#define _tcscat strcat
#define _sntprintf snprintf
#endif
#endif
#endif

///
// Define variable types

#ifndef UINT_8
#ifdef _MSC_VER // Compiling with Microsoft compiler
#define UINT_8 unsigned __int8
#else // !_MSC_VER
#define UINT_8 unsigned char
#endif // _MSC_VER
#endif

#ifndef UINT_32
#ifdef _MSC_VER // Compiling with Microsoft compiler
#define UINT_32 unsigned __int32
#else // !_MSC_VER
#if (ULONG_MAX == 0xFFFFFFFFUL)
#define UINT_32 unsigned long
#else
#define UINT_32 unsigned int
#endif
#endif // _MSC_VER
#endif // UINT_32

#ifndef INT_64
#ifdef _MSC_VER // Compiling with Microsoft compiler
#define INT_64 __int64
#else // !_MSC_VER
#define INT_64 long long
#endif // _MSC_VER
#endif // INT_64

#ifndef UINT_64
#ifdef _MSC_VER // Compiling with Microsoft compiler
#define UINT_64 unsigned __int64
#else // !_MSC_VER
#define UINT_64 unsigned long long
#endif // _MSC_VER
#endif // UINT_64

///
// Declare SHA-1 workspace

typedef union
{
	UINT_8 c[64];
	UINT_32 l[16];
} SHA1_WORKSPACE_BLOCK;

class CSHA1
{
public:
#ifdef SHA1_UTILITY_FUNCTIONS
	// Different formats for ReportHash(Stl)
	enum REPORT_TYPE
	{
		REPORT_HEX = 0,
		REPORT_DIGIT = 1,
		REPORT_HEX_SHORT = 2
	};
#endif

	// Constructor and destructor
	CSHA1();

#ifdef SHA1_WIPE_VARIABLES
	~CSHA1();
#endif

	void Reset();

	// Hash in binary data and strings
	void Update(const UINT_8* pbData, UINT_32 uLen);

#ifdef SHA1_UTILITY_FUNCTIONS
	// Hash in file contents
	bool HashFile(const TCHAR* tszFileName);
#endif

	// Finalize hash; call it before using ReportHash(Stl)
	void Final();

#ifdef SHA1_UTILITY_FUNCTIONS
	bool ReportHash(TCHAR* tszReport, REPORT_TYPE rtReportType = REPORT_HEX) const;
#endif

#ifdef SHA1_STL_FUNCTIONS
	bool ReportHashStl(std::basic_string& strOut, REPORT_TYPE rtReportType =
		REPORT_HEX) const;
#endif

	// Get the raw message digest (20 bytes)
	bool GetHash(UINT_8* pbDest20) const;

private:
	// Private SHA-1 transformation
	void Transform(UINT_32* pState, const UINT_8* pBuffer);

	// Member variables
	UINT_32 m_state[5];
	UINT_32 m_count[2];
	UINT_32 m_reserved0[1]; // Memory alignment padding
	UINT_8 m_buffer[64];
	UINT_8 m_digest[20];
	UINT_32 m_reserved1[3]; // Memory alignment padding

	UINT_8 m_workspace[64];
	SHA1_WORKSPACE_BLOCK* m_block; // SHA1 pointer to the byte array above
};

#endif // SHA1_H_A545E61D43E9404E8D736869AB3CBFE7

SHA1.cpp
/*
  100% free public domain implementation of the SHA-1 algorithm
  by Dominik Reichl 
  Web: http://www.dominik-reichl.de/

  See header file for version history and test vectors.
*/

// If compiling with MFC, you might want to add #include "StdAfx.h"

#define _CRT_SECURE_NO_WARNINGS
#include "SHA1.h"

#define SHA1_MAX_FILE_BUFFER (32 * 20 * 820)

// Rotate p_val32 by p_nBits bits to the left
#ifndef ROL32
#ifdef _MSC_VER
#define ROL32(p_val32,p_nBits) _rotl(p_val32,p_nBits)
#else
#define ROL32(p_val32,p_nBits) (((p_val32)<>(32-(p_nBits))))
#endif
#endif

#ifdef SHA1_LITTLE_ENDIAN
#define SHABLK0(i) (m_block->l[i] = \
	(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))
#else
#define SHABLK0(i) (m_block->l[i])
#endif

#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ \
	m_block->l[(i+8)&15] ^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))

// SHA-1 rounds
#define S_R0(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define S_R1(v,w,x,y,z,i) {z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5);w=ROL32(w,30);}
#define S_R2(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5);w=ROL32(w,30);}
#define S_R3(v,w,x,y,z,i) {z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5);w=ROL32(w,30);}
#define S_R4(v,w,x,y,z,i) {z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5);w=ROL32(w,30);}

#pragma warning(push)
// Disable compiler warning 'Conditional expression is constant'
#pragma warning(disable: 4127)

CSHA1::CSHA1()
{
	m_block = (SHA1_WORKSPACE_BLOCK*)m_workspace;

	Reset();
}

#ifdef SHA1_WIPE_VARIABLES
CSHA1::~CSHA1()
{
	Reset();
}
#endif

void CSHA1::Reset()
{
	// SHA1 initialization constants
	m_state[0] = 0x67452301;
	m_state[1] = 0xEFCDAB89;
	m_state[2] = 0x98BADCFE;
	m_state[3] = 0x10325476;
	m_state[4] = 0xC3D2E1F0;

	m_count[0] = 0;
	m_count[1] = 0;
}

void CSHA1::Transform(UINT_32* pState, const UINT_8* pBuffer)
{
	UINT_32 a = pState[0], b = pState[1], c = pState[2], d = pState[3], e = pState[4];

	memcpy(m_block, pBuffer, 64);

	// 4 rounds of 20 operations each, loop unrolled
	S_R0(a,b,c,d,e, 0); S_R0(e,a,b,c,d, 1); S_R0(d,e,a,b,c, 2); S_R0(c,d,e,a,b, 3);
	S_R0(b,c,d,e,a, 4); S_R0(a,b,c,d,e, 5); S_R0(e,a,b,c,d, 6); S_R0(d,e,a,b,c, 7);
	S_R0(c,d,e,a,b, 8); S_R0(b,c,d,e,a, 9); S_R0(a,b,c,d,e,10); S_R0(e,a,b,c,d,11);
	S_R0(d,e,a,b,c,12); S_R0(c,d,e,a,b,13); S_R0(b,c,d,e,a,14); S_R0(a,b,c,d,e,15);
	S_R1(e,a,b,c,d,16); S_R1(d,e,a,b,c,17); S_R1(c,d,e,a,b,18); S_R1(b,c,d,e,a,19);
	S_R2(a,b,c,d,e,20); S_R2(e,a,b,c,d,21); S_R2(d,e,a,b,c,22); S_R2(c,d,e,a,b,23);
	S_R2(b,c,d,e,a,24); S_R2(a,b,c,d,e,25); S_R2(e,a,b,c,d,26); S_R2(d,e,a,b,c,27);
	S_R2(c,d,e,a,b,28); S_R2(b,c,d,e,a,29); S_R2(a,b,c,d,e,30); S_R2(e,a,b,c,d,31);
	S_R2(d,e,a,b,c,32); S_R2(c,d,e,a,b,33); S_R2(b,c,d,e,a,34); S_R2(a,b,c,d,e,35);
	S_R2(e,a,b,c,d,36); S_R2(d,e,a,b,c,37); S_R2(c,d,e,a,b,38); S_R2(b,c,d,e,a,39);
	S_R3(a,b,c,d,e,40); S_R3(e,a,b,c,d,41); S_R3(d,e,a,b,c,42); S_R3(c,d,e,a,b,43);
	S_R3(b,c,d,e,a,44); S_R3(a,b,c,d,e,45); S_R3(e,a,b,c,d,46); S_R3(d,e,a,b,c,47);
	S_R3(c,d,e,a,b,48); S_R3(b,c,d,e,a,49); S_R3(a,b,c,d,e,50); S_R3(e,a,b,c,d,51);
	S_R3(d,e,a,b,c,52); S_R3(c,d,e,a,b,53); S_R3(b,c,d,e,a,54); S_R3(a,b,c,d,e,55);
	S_R3(e,a,b,c,d,56); S_R3(d,e,a,b,c,57); S_R3(c,d,e,a,b,58); S_R3(b,c,d,e,a,59);
	S_R4(a,b,c,d,e,60); S_R4(e,a,b,c,d,61); S_R4(d,e,a,b,c,62); S_R4(c,d,e,a,b,63);
	S_R4(b,c,d,e,a,64); S_R4(a,b,c,d,e,65); S_R4(e,a,b,c,d,66); S_R4(d,e,a,b,c,67);
	S_R4(c,d,e,a,b,68); S_R4(b,c,d,e,a,69); S_R4(a,b,c,d,e,70); S_R4(e,a,b,c,d,71);
	S_R4(d,e,a,b,c,72); S_R4(c,d,e,a,b,73); S_R4(b,c,d,e,a,74); S_R4(a,b,c,d,e,75);
	S_R4(e,a,b,c,d,76); S_R4(d,e,a,b,c,77); S_R4(c,d,e,a,b,78); S_R4(b,c,d,e,a,79);

	// Add the working vars back into state
	pState[0] += a;
	pState[1] += b;
	pState[2] += c;
	pState[3] += d;
	pState[4] += e;

	// Wipe variables
#ifdef SHA1_WIPE_VARIABLES
	a = b = c = d = e = 0;
#endif
}

void CSHA1::Update(const UINT_8* pbData, UINT_32 uLen)
{
	UINT_32 j = ((m_count[0] >> 3) & 0x3F);

	if((m_count[0] += (uLen << 3)) < (uLen << 3))
		++m_count[1]; // Overflow

	m_count[1] += (uLen >> 29);

	UINT_32 i;
	if((j + uLen) > 63)
	{
		i = 64 - j;
		memcpy(&m_buffer[j], pbData, i);
		Transform(m_state, m_buffer);

		for( ; (i + 63) < uLen; i += 64)
			Transform(m_state, &pbData[i]);

		j = 0;
	}
	else i = 0;

	if((uLen - i) != 0)
		memcpy(&m_buffer[j], &pbData[i], uLen - i);
}

#ifdef SHA1_UTILITY_FUNCTIONS
bool CSHA1::HashFile(const TCHAR* tszFileName)
{
	if(tszFileName == NULL) return false;

	FILE* fpIn = _tfopen(tszFileName, _T("rb"));
	if(fpIn == NULL) return false;

	UINT_8* pbData = new UINT_8[SHA1_MAX_FILE_BUFFER];
	if(pbData == NULL) { fclose(fpIn); return false; }

	bool bSuccess = true;
	while(true)
	{
		const size_t uRead = fread(pbData, 1, SHA1_MAX_FILE_BUFFER, fpIn);

		if(uRead > 0)
			Update(pbData, static_cast(uRead));

		if(uRead < SHA1_MAX_FILE_BUFFER)
		{
			if(feof(fpIn) == 0) bSuccess = false;
			break;
		}
	}

	fclose(fpIn);
	delete[] pbData;
	return bSuccess;
}
#endif

void CSHA1::Final()
{
	UINT_32 i;

	UINT_8 pbFinalCount[8];
	for(i = 0; i < 8; ++i)
		pbFinalCount[i] = static_cast((m_count[((i >= 4) ? 0 : 1)] >>
			((3 - (i & 3)) * 8) ) & 0xFF); // Endian independent

	Update((UINT_8*)"\200", 1);

	while((m_count[0] & 504) != 448)
		Update((UINT_8*)"\0", 1);

	Update(pbFinalCount, 8); // Cause a Transform()

	for(i = 0; i < 20; ++i)
		m_digest[i] = static_cast((m_state[i >> 2] >> ((3 -
			(i & 3)) * 8)) & 0xFF);

	// Wipe variables for security reasons
#ifdef SHA1_WIPE_VARIABLES
	memset(m_buffer, 0, 64);
	memset(m_state, 0, 20);
	memset(m_count, 0, 8);
	memset(pbFinalCount, 0, 8);
	Transform(m_state, m_buffer);
#endif
}

#ifdef SHA1_UTILITY_FUNCTIONS
bool CSHA1::ReportHash(TCHAR* tszReport, REPORT_TYPE rtReportType) const
{
	if(tszReport == NULL) return false;

	TCHAR tszTemp[16];

	if((rtReportType == REPORT_HEX) || (rtReportType == REPORT_HEX_SHORT))
	{
		_sntprintf(tszTemp, 15, _T("%02X"), m_digest[0]);
		_tcscpy(tszReport, tszTemp);

		const TCHAR* lpFmt = ((rtReportType == REPORT_HEX) ? _T(" %02X") : _T("%02X"));
		for(size_t i = 1; i < 20; ++i)
		{
			_sntprintf(tszTemp, 15, lpFmt, m_digest[i]);
			_tcscat(tszReport, tszTemp);
		}
	}
	else if(rtReportType == REPORT_DIGIT)
	{
		_sntprintf(tszTemp, 15, _T("%u"), m_digest[0]);
		_tcscpy(tszReport, tszTemp);

		for(size_t i = 1; i < 20; ++i)
		{
			_sntprintf(tszTemp, 15, _T(" %u"), m_digest[i]);
			_tcscat(tszReport, tszTemp);
		}
	}
	else return false;

	return true;
}
#endif

#ifdef SHA1_STL_FUNCTIONS
bool CSHA1::ReportHashStl(std::basic_string& strOut, REPORT_TYPE rtReportType) const
{
	TCHAR tszOut[84];
	const bool bResult = ReportHash(tszOut, rtReportType);
	if(bResult) strOut = tszOut;
	return bResult;
}
#endif

bool CSHA1::GetHash(UINT_8* pbDest20) const
{
	if(pbDest20 == NULL) return false;
	memcpy(pbDest20, m_digest, 20);
	return true;
}

#pragma warning(pop)

SHA 1アルゴリズムの基本的な使用:
CSHA1 sha1;
char str1[] = "123456";
char str2[] = "456789abcd";
sha1.Update((unsigned char*)str1,strlen(str1);
sha1.Update((unsigned char*)str2, strlen(str2);
sha1.Final();
unsigned char chSha1[20] = "";
sha1.GetHash(chSha1);

この文書のアルゴリズムの一部のコードは、ネットワークから参照されます.
SHA 1アルゴリズムリファレンス:http://www.dominik-reichl.de/.