pix2pix tensorflow2 試行錯誤の記録


概要

参照:https://www.tensorflow.org/tutorials/generative/pix2pix
上記pix2pix-tensorflowのサンプルコードの実行までの環境構築や実行に際し、発生したエラーなどについての対応を記載します。
この分野に関して特段知識があるわけではないので、記載の対応方法が最適解かどうかは不明です。

システム構成

OS: Windows10 home
CPU: Ryzen3 3200
GPU: RTX-2060
エディタ: Visual Studio Code

対応内容

・Ryzen3 3200 ⇒ Tensorflow 2.1.0でエラー発生 ⇒ Tensorflow 2.0.0
 (Tensorflow 2.1 は最新CPUでしか動かないとの情報。真偽不明。ソース失念)
・Tensorflow 2.0.0 ⇒ 対応表に従いCUDA 10.0、cuDNN7.4.1 ⇒ cuDNN7.6.0に変更(コード実行時エラー)
 参考:https://qiita.com/rhene/items/31bf4713b9dbda28bcc1
・GPUメモリ確保でエラー発生⇒サンプルコードに対応コード追加
 参考:https://qiita.com/studio_haneya/items/4dfaf2fb2ac44818e7e0

#エラーメッセージ
tensorflow.python.framework.errors_impl.UnknownError: Failed to get convolution algorithm. This is probably because cuDNN failed to initialize, 
so try looking to see if a warning log message was printed above. [Op:Conv2D]
#対応コード
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    for k in range(len(physical_devices)):
        #tf.config.experimental.per_process_gpu_memory_fraction = 0.8
        tf.config.experimental.set_memory_growth(physical_devices[k], True)
        print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k]))
else:
    print("Not enough GPU hardware devices available")

・コード実行時、graphvizがありませんとのエラー ⇒ graphviz2.3.8 インストール
参考:http://ruby.kyoto-wu.ac.jp/info-com/Softwares/Graphviz/

コード全体

import tensorflow as tf

import os
import time

from matplotlib import pyplot as plt
from IPython import display

#GPUエラーでの対応箇所
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
    for k in range(len(physical_devices)):
        tf.config.experimental.set_memory_growth(physical_devices[k], True)
        print('memory growth:', tf.config.experimental.get_memory_growth(physical_devices[k]))
else:
    print("Not enough GPU hardware devices available")


#以下、TensorFlow公式サイトのコードより変更なし
_URL = 'https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz'

path_to_zip = tf.keras.utils.get_file('facades.tar.gz',
                                      origin=_URL,
                                      extract=True)

PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/')

BUFFER_SIZE = 400
BATCH_SIZE = 1
IMG_WIDTH = 256
IMG_HEIGHT = 256

def load(image_file):
    image = tf.io.read_file(image_file)
    image = tf.image.decode_jpeg(image)

    w = tf.shape(image)[1]

    w = w // 2
    real_image = image[:, :w, :]
    input_image = image[:, w:, :]

    input_image = tf.cast(input_image, tf.float32)
    real_image = tf.cast(real_image, tf.float32)

    return input_image, real_image

inp, re = load(PATH+'train/100.jpg')
# casting to int for matplotlib to show the image
plt.figure()
plt.imshow(inp/255.0)
plt.figure()
plt.imshow(re/255.0)

def resize(input_image, real_image, height, width):
    input_image = tf.image.resize(input_image, [height, width],
                                method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    real_image = tf.image.resize(real_image, [height, width],
                                method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)

    return input_image, real_image

def random_crop(input_image, real_image):
    stacked_image = tf.stack([input_image, real_image], axis=0)
    cropped_image = tf.image.random_crop(
        stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3])

    return cropped_image[0], cropped_image[1]

# normalizing the images to [-1, 1]

def normalize(input_image, real_image):
    input_image = (input_image / 127.5) - 1
    real_image = (real_image / 127.5) - 1

    return input_image, real_image

@tf.function()
def random_jitter(input_image, real_image):
    # resizing to 286 x 286 x 3
    input_image, real_image = resize(input_image, real_image, 286, 286)

    # randomly cropping to 256 x 256 x 3
    input_image, real_image = random_crop(input_image, real_image)

    if tf.random.uniform(()) > 0.5:
        # random mirroring
        input_image = tf.image.flip_left_right(input_image)
        real_image = tf.image.flip_left_right(real_image)

    return input_image, real_image

plt.figure(figsize=(6, 6))
for i in range(4):
    rj_inp, rj_re = random_jitter(inp, re)
    plt.subplot(2, 2, i+1)
    plt.imshow(rj_inp/255.0)
    plt.axis('off')
plt.show()

def load_image_train(image_file):
    input_image, real_image = load(image_file)
    input_image, real_image = random_jitter(input_image, real_image)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image

def load_image_test(image_file):
    input_image, real_image = load(image_file)
    input_image, real_image = resize(input_image, real_image,
                                     IMG_HEIGHT, IMG_WIDTH)
    input_image, real_image = normalize(input_image, real_image)

    return input_image, real_image

train_dataset = tf.data.Dataset.list_files(PATH+'train/*.jpg')
train_dataset = train_dataset.map(load_image_train,
                                  num_parallel_calls=tf.data.experimental.AUTOTUNE)
train_dataset = train_dataset.shuffle(BUFFER_SIZE)
train_dataset = train_dataset.batch(BATCH_SIZE)

test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg')
test_dataset = test_dataset.map(load_image_test)
test_dataset = test_dataset.batch(BATCH_SIZE)

OUTPUT_CHANNELS = 3

def downsample(filters, size, apply_batchnorm=True):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(
        tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',
                            kernel_initializer=initializer, use_bias=False))

    if apply_batchnorm:
        result.add(tf.keras.layers.BatchNormalization())

    result.add(tf.keras.layers.LeakyReLU())

    return result

down_model = downsample(3, 4)
down_result = down_model(tf.expand_dims(inp, 0))
print (down_result.shape)

def upsample(filters, size, apply_dropout=False):
    initializer = tf.random_normal_initializer(0., 0.02)

    result = tf.keras.Sequential()
    result.add(
        tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
                                        padding='same',
                                        kernel_initializer=initializer,
                                        use_bias=False))

    result.add(tf.keras.layers.BatchNormalization())

    if apply_dropout:
        result.add(tf.keras.layers.Dropout(0.5))

    result.add(tf.keras.layers.ReLU())

    return result

up_model = upsample(3, 4)
up_result = up_model(down_result)
print (up_result.shape)

def Generator():
    inputs = tf.keras.layers.Input(shape=[256,256,3])

    down_stack = [
        downsample(64, 4, apply_batchnorm=False), # (bs, 128, 128, 64)
        downsample(128, 4), # (bs, 64, 64, 128)
        downsample(256, 4), # (bs, 32, 32, 256)
        downsample(512, 4), # (bs, 16, 16, 512)
        downsample(512, 4), # (bs, 8, 8, 512)
        downsample(512, 4), # (bs, 4, 4, 512)
        downsample(512, 4), # (bs, 2, 2, 512)
        downsample(512, 4), # (bs, 1, 1, 512)
    ]

    up_stack = [
        upsample(512, 4, apply_dropout=True), # (bs, 2, 2, 1024)
        upsample(512, 4, apply_dropout=True), # (bs, 4, 4, 1024)
        upsample(512, 4, apply_dropout=True), # (bs, 8, 8, 1024)
        upsample(512, 4), # (bs, 16, 16, 1024)
        upsample(256, 4), # (bs, 32, 32, 512)
        upsample(128, 4), # (bs, 64, 64, 256)
        upsample(64, 4), # (bs, 128, 128, 128)
    ]

    initializer = tf.random_normal_initializer(0., 0.02)
    last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
                                            strides=2,
                                            padding='same',
                                            kernel_initializer=initializer,
                                            activation='tanh') # (bs, 256, 256, 3)

    x = inputs

    # Downsampling through the model
    skips = []
    for down in down_stack:
        x = down(x)
        skips.append(x)

    skips = reversed(skips[:-1])

    # Upsampling and establishing the skip connections
    for up, skip in zip(up_stack, skips):
        x = up(x)
        x = tf.keras.layers.Concatenate()([x, skip])

    x = last(x)

    return tf.keras.Model(inputs=inputs, outputs=x)

generator = Generator()
tf.keras.utils.plot_model(generator, show_shapes=True, dpi=64)

gen_output = generator(inp[tf.newaxis,...], training=False)
plt.imshow(gen_output[0,...])

LAMBDA = 100

def generator_loss(disc_generated_output, gen_output, target):
    gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)

    # mean absolute error
    l1_loss = tf.reduce_mean(tf.abs(target - gen_output))

    total_gen_loss = gan_loss + (LAMBDA * l1_loss)

    return total_gen_loss, gan_loss, l1_loss

def Discriminator():
    initializer = tf.random_normal_initializer(0., 0.02)

    inp = tf.keras.layers.Input(shape=[256, 256, 3], name='input_image')
    tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image')

    x = tf.keras.layers.concatenate([inp, tar]) # (bs, 256, 256, channels*2)

    down1 = downsample(64, 4, False)(x) # (bs, 128, 128, 64)
    down2 = downsample(128, 4)(down1) # (bs, 64, 64, 128)
    down3 = downsample(256, 4)(down2) # (bs, 32, 32, 256)

    zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3) # (bs, 34, 34, 256)
    conv = tf.keras.layers.Conv2D(512, 4, strides=1,
                                    kernel_initializer=initializer,
                                    use_bias=False)(zero_pad1) # (bs, 31, 31, 512)

    batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

    leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

    zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu) # (bs, 33, 33, 512)

    last = tf.keras.layers.Conv2D(1, 4, strides=1,
                                    kernel_initializer=initializer)(zero_pad2) # (bs, 30, 30, 1)

    return tf.keras.Model(inputs=[inp, tar], outputs=last)

discriminator = Discriminator()
tf.keras.utils.plot_model(discriminator, show_shapes=True, dpi=64)

disc_out = discriminator([inp[tf.newaxis,...], gen_output], training=False)
plt.imshow(disc_out[0,...,-1], vmin=-20, vmax=20, cmap='RdBu_r')
plt.colorbar()

loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(disc_real_output, disc_generated_output):
    real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

    generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

    total_disc_loss = real_loss + generated_loss

    return total_disc_loss

generator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)
discriminator_optimizer = tf.keras.optimizers.Adam(2e-4, beta_1=0.5)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
                                 discriminator_optimizer=discriminator_optimizer,
                                 generator=generator,
                                 discriminator=discriminator)

def generate_images(model, test_input, tar):
    prediction = model(test_input, training=True)
    plt.figure(figsize=(15,15))

    display_list = [test_input[0], tar[0], prediction[0]]
    title = ['Input Image', 'Ground Truth', 'Predicted Image']

    for i in range(3):
        plt.subplot(1, 3, i+1)
        plt.title(title[i])
        # getting the pixel values between [0, 1] to plot it.
        plt.imshow(display_list[i] * 0.5 + 0.5)
        plt.axis('off')
    plt.show()

for example_input, example_target in test_dataset.take(1):
    generate_images(generator, example_input, example_target)

EPOCHS = 150

import datetime
log_dir="logs/"

summary_writer = tf.summary.create_file_writer(
    log_dir + "fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))

@tf.function
def train_step(input_image, target, epoch):
    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        gen_output = generator(input_image, training=True)

        disc_real_output = discriminator([input_image, target], training=True)
        disc_generated_output = discriminator([input_image, gen_output], training=True)

        gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target)
        disc_loss = discriminator_loss(disc_real_output, disc_generated_output)

    generator_gradients = gen_tape.gradient(gen_total_loss,
                                            generator.trainable_variables)
    discriminator_gradients = disc_tape.gradient(disc_loss,
                                                discriminator.trainable_variables)

    generator_optimizer.apply_gradients(zip(generator_gradients,
                                            generator.trainable_variables))
    discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
                                                discriminator.trainable_variables))

    with summary_writer.as_default():
        tf.summary.scalar('gen_total_loss', gen_total_loss, step=epoch)
        tf.summary.scalar('gen_gan_loss', gen_gan_loss, step=epoch)
        tf.summary.scalar('gen_l1_loss', gen_l1_loss, step=epoch)
        tf.summary.scalar('disc_loss', disc_loss, step=epoch)

def fit(train_ds, epochs, test_ds):
    for epoch in range(epochs):
        start = time.time()

        display.clear_output(wait=True)

        for example_input, example_target in test_ds.take(1):
            generate_images(generator, example_input, example_target)
            print("Epoch: ", epoch)

        # Train
        for n, (input_image, target) in train_ds.enumerate():
            print('.', end='')
        if (n+1) % 100 == 0:
            print()
        train_step(input_image, target, epoch)
        print()

        # saving (checkpoint) the model every 20 epochs
        if (epoch + 1) % 20 == 0:
            checkpoint.save(file_prefix = checkpoint_prefix)

        print ('Time taken for epoch {} is {} sec\n'.format(epoch + 1,
                                                            time.time()-start))
    checkpoint.save(file_prefix = checkpoint_prefix)

# %load_ext tensorboard
# %tensorboard --logdir {log_dir}

fit(train_dataset, EPOCHS, test_dataset)