Opencvベースのウェーブレット変換

11078 ワード

申明、本文は筆者のオリジナルではなく、原文は転載した.http://www.cnblogs.com/zhangzhi/archive/2009/09/19/1569888.html
関数DWT()とIDWT()が提供され、前者は任意の階層のウェーブレット変換を完了し、後者は任意の階層のウェーブレット逆変換を完了する.入力画像は単一チャネル浮動小数点画像でなければならず、画像サイズにも要求があり(1層変換:w,hは2の倍数でなければならない;2層変換:w,hは4の倍数でなければならない;3層変換:w,hは8の倍数でなければならない......)、変換後の結果は入力画像に直接保存される.1、関数パラメータが簡単で、画像ポインタpImageと変換層数nLayer.2、1つの関数は直接多層2次元ウェーブレット変換を完成し、できるだけ下付き演算を減らし、不要な関数呼び出しを避け、実行効率を高める.3、変換中、1つのポインタ配列pDataを使用して各行のデータの開始位置を保存し、pRowとpColumnを使用して1行と1列の一時データを保存し、パリティの分離やマージに使用し、メモリ消費量が少ない.
コード:すべて選択// ( )
void DWT(IplImage *pImage, int nLayer)
{
   //
   if (pImage)
   {
      if (pImage->nChannels == 1 &&
         pImage->depth == IPL_DEPTH_32F &&
         ((pImage->width >> nLayer) << nLayer) == pImage->width &&
         ((pImage->height >> nLayer) << nLayer) == pImage->height)
      {
         int     i, x, y, n;
         float   fValue   = 0;
         float   fRadius  = sqrt(2.0f);
         int     nWidth   = pImage->width;
         int     nHeight  = pImage->height;
         int     nHalfW   = nWidth / 2;
         int     nHalfH   = nHeight / 2;
         float **pData    = new float*[pImage->height];
         float  *pRow     = new float[pImage->width];
         float  *pColumn  = new float[pImage->height];
         for (i = 0; i < pImage->height; i++)
         {
            pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
         }
         //
         for (n = 0; n < nLayer; n++, nWidth /= 2, nHeight /= 2, nHalfW /= 2, nHalfH /= 2)
         {
            //
            for (y = 0; y < nHeight; y++)
            {
               //
               memcpy(pRow, pData[y], sizeof(float) * nWidth);
               for (i = 0; i < nHalfW; i++)
               {
                  x = i * 2;
                  pData[y][i] = pRow[x];
                  pData[y][nHalfW + i] = pRow[x + 1];
               }
               //
               for (i = 0; i < nHalfW - 1; i++)
               {
                  fValue = (pData[y][i] + pData[y][i + 1]) / 2;
                  pData[y][nHalfW + i] -= fValue;
               }
               fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
               pData[y][nWidth - 1] -= fValue;
               fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
               pData[y][0] += fValue;
               for (i = 1; i < nHalfW; i++)
               {
                  fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
                  pData[y][i] += fValue;
               }
               //
               for (i = 0; i < nHalfW; i++)
               {
                  pData[y][i] *= fRadius;
                  pData[y][nHalfW + i] /= fRadius;
               }
            }
            //
            for (x = 0; x < nWidth; x++)
            {
               //
               for (i = 0; i < nHalfH; i++)
               {
                  y = i * 2;
                  pColumn[i] = pData[y][x];
                  pColumn[nHalfH + i] = pData[y + 1][x];
               }
               for (i = 0; i < nHeight; i++)
               {
                  pData[i][x] = pColumn[i];
               }
               //
               for (i = 0; i < nHalfH - 1; i++)
               {
                  fValue = (pData[i][x] + pData[i + 1][x]) / 2;
                  pData[nHalfH + i][x] -= fValue;
               }
               fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
               pData[nHeight - 1][x] -= fValue;
               fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
               pData[0][x] += fValue;
               for (i = 1; i < nHalfH; i++)
               {
                  fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
                  pData[i][x] += fValue;
               }
               //
               for (i = 0; i < nHalfH; i++)
               {
                  pData[i][x] *= fRadius;
                  pData[nHalfH + i][x] /= fRadius;
               }
            }
         }
         delete[] pData;
         delete[] pRow;
         delete[] pColumn;
      }
   }
}

// ( )
void IDWT(IplImage *pImage, int nLayer)
{
   //
   if (pImage)
   {
      if (pImage->nChannels == 1 &&
         pImage->depth == IPL_DEPTH_32F &&
         ((pImage->width >> nLayer) << nLayer) == pImage->width &&
         ((pImage->height >> nLayer) << nLayer) == pImage->height)
      {
         int     i, x, y, n;
         float   fValue   = 0;
         float   fRadius  = sqrt(2.0f);
         int     nWidth   = pImage->width >> (nLayer - 1);
         int     nHeight  = pImage->height >> (nLayer - 1);
         int     nHalfW   = nWidth / 2;
         int     nHalfH   = nHeight / 2;
         float **pData    = new float*[pImage->height];
         float  *pRow     = new float[pImage->width];
         float  *pColumn  = new float[pImage->height];
         for (i = 0; i < pImage->height; i++)
         {
            pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
         }
         //
         for (n = 0; n < nLayer; n++, nWidth *= 2, nHeight *= 2, nHalfW *= 2, nHalfH *= 2)
         {
            //
            for (x = 0; x < nWidth; x++)
            {
               //
               for (i = 0; i < nHalfH; i++)
               {
                  pData[i][x] /= fRadius;
                  pData[nHalfH + i][x] *= fRadius;
               }
               //
               fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
               pData[0][x] -= fValue;
               for (i = 1; i < nHalfH; i++)
               {
                  fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
                  pData[i][x] -= fValue;
               }
               for (i = 0; i < nHalfH - 1; i++)
               {
                  fValue = (pData[i][x] + pData[i + 1][x]) / 2;
                  pData[nHalfH + i][x] += fValue;
               }
               fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
               pData[nHeight - 1][x] += fValue;
               //
               for (i = 0; i < nHalfH; i++)
               {
                  y = i * 2;
                  pColumn[y] = pData[i][x];
                  pColumn[y + 1] = pData[nHalfH + i][x];
               }
               for (i = 0; i < nHeight; i++)
               {
                  pData[i][x] = pColumn[i];
               }
            }
            //
            for (y = 0; y < nHeight; y++)
            {
               //
               for (i = 0; i < nHalfW; i++)
               {
                  pData[y][i] /= fRadius;
                  pData[y][nHalfW + i] *= fRadius;
               }
               //
               fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
               pData[y][0] -= fValue;
               for (i = 1; i < nHalfW; i++)
               {
                  fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
                  pData[y][i] -= fValue;
               }
               for (i = 0; i < nHalfW - 1; i++)
               {
                  fValue = (pData[y][i] + pData[y][i + 1]) / 2;
                  pData[y][nHalfW + i] += fValue;
               }
               fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
               pData[y][nWidth - 1] += fValue;
               //
               for (i = 0; i < nHalfW; i++)
               {
                  x = i * 2;
                  pRow[x] = pData[y][i];
                  pRow[x + 1] = pData[y][nHalfW + i];
               }
               memcpy(pData[y], pRow, sizeof(float) * nWidth);
            }
         }
         delete[] pData;
         delete[] pRow;
         delete[] pColumn;
      }
   }
}

上記のコードは、単一チャネルのみを変換することができ、画像のビット深度やサイズも要求されるため、あまり使いにくい.大丈夫です.この2つの関数について、任意のサイズのカラー画像に対して任意の階層のウェーブレット変換を行い、セグメントコードを与えることができます.
コード:すべて選択//
int nLayer = 2;
//
IplImage *pSrc = cvLoadImage("Lena.jpg", CV_LOAD_IMAGE_COLOR);
//
CvSize size = cvGetSize(pSrc);
if ((pSrc->width >> nLayer) << nLayer != pSrc->width)
{
   size.width = ((pSrc->width >> nLayer) + 1) << nLayer;
}
if ((pSrc->height >> nLayer) << nLayer != pSrc->height)
{
   size.height = ((pSrc->height >> nLayer) + 1) << nLayer;
}
//
IplImage *pWavelet = cvCreateImage(size, IPL_DEPTH_32F, pSrc->nChannels);
if (pWavelet)
{
   //
   cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
   cvConvertScale(pSrc, pWavelet, 1, -128);
   cvResetImageROI(pWavelet);
   //
   IplImage *pImage = cvCreateImage(cvGetSize(pWavelet), IPL_DEPTH_32F, 1);
   if (pImage)
   {
      for (int i = 1; i <= pWavelet->nChannels; i++)
      {
         cvSetImageCOI(pWavelet, i);
         cvCopy(pWavelet, pImage, NULL);
         //
         DWT(pImage, nLayer);
         //
         // IDWT(pImage, nLayer);
         cvCopy(pImage, pWavelet, NULL);
      }
      cvSetImageCOI(pWavelet, 0);
      cvReleaseImage(&pImage);
   }
   //
   cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
   cvConvertScale(pWavelet, pSrc, 1, 128);
   cvResetImageROI(pWavelet); // ,
   cvReleaseImage(&pWavelet);
}
// pSrc
// ...
cvReleaseImage(&pSrc);