JAva各基本タイプ回転bytes配列


JAvaが基本タイプをbyte[]配列に変換する場合は、大端小端の問題を考慮する必要があります
1.大端フォーマットの下で、基本タイプはbyte[]と互いに回転する BigByteUtil.java
package com.ysq.util;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;
import java.util.logging.Logger;

/**
 *    byte    
 * @author admin
 *
 */
public class BigByteUtil {
	static Logger logger = Logger.getLogger(BigByteUtil.class.getName());
	
	/**
	 * short   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getShortBytes(short data) {
		ByteBuffer buffer = ByteBuffer.allocate(2);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putShort(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * chart   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getCharBytes(char data) {
		ByteBuffer buffer = ByteBuffer.allocate(2);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putChar(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * int   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getIntBytes(int data) {
		ByteBuffer buffer = ByteBuffer.allocate(4);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putInt(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * long   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getLongBytes(long data) {
		ByteBuffer buffer = ByteBuffer.allocate(8);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putLong(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * float   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getFloatBytes(float data) {
		ByteBuffer buffer = ByteBuffer.allocate(4);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putFloat(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * double   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getDoubleBytes(double data) {
		ByteBuffer buffer = ByteBuffer.allocate(8);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.putDouble(data);
		byte[] bytes = buffer.array();
		return bytes;
	}

	/**
	 * String   byte[]
	 * 
	 * @param data
	 * @param charsetName
	 * @return
	 */
	public static byte[] getStringBytes(String data, String charsetName) {
		Charset charset = Charset.forName(charsetName);
		byte[] bytes = data.getBytes(charset);
		return bytes;
	}

	/**
	 * String   byte[]
	 * 
	 * @param data
	 * @return
	 */
	public static byte[] getStringBytes(String data) {
		byte[] bytes = null;
		if(data != null){
			bytes = data.getBytes();
		}else{
			bytes = new byte[0];
		}
		return bytes;
	}

	/*****************************************************************************************************************************/
	
	/**
	 * byte[]  short
	 *   
	 * @param bytes
	 * @return
	 */
	public static short getShort(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		short result = buffer.getShort(0);
		return result;
	}

	/**
	 * byte[]   char
	 *   
	 * @param bytes
	 * @return
	 */
	public static char getChar(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		char result = buffer.getChar(0);
		return result;
	}

	/**
	 * byte[]   int
	 *   
	 * @param bytes
	 * @return
	 */
	public static int getInt(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		int result = buffer.getInt(0);
		return result;
	}

	/**
	 * byte[]   long
	 * 
	 * @param bytes
	 * @return
	 */
	public static long getLong(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		long result = buffer.getLong(0);
		return result;
	}

	/**
	 * byte[]   float
	 * 
	 * @param bytes
	 * @return
	 */
	public static float getFloat(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		float result = buffer.getFloat(0);
		return result;
	}

	/**
	 * byte[]   double
	 * 
	 * @param bytes
	 * @return
	 */
	public static double getDouble(byte[] bytes) {
		ByteBuffer buffer = ByteBuffer.allocate(bytes.length);
		buffer.order(ByteOrder.BIG_ENDIAN);
		buffer.put(bytes);
		double result = buffer.getDouble(0);
		return result;
	}

	/**
	 * byte[]   String
	 * 
	 * @param bytes
	 * @param charsetName
	 * @return
	 */
	public static String getString(byte[] bytes, String charsetName) {
		String result = new String(bytes, Charset.forName(charsetName));
		return result;
	}

	/**
	 * byte[]   String
	 * 
	 * @param bytes
	 * @return
	 */
	public static String getString(byte[] bytes) {
		String result = new String(bytes);
		return result;
	}
	
	/**
	 *     
	 */
	private static void verifiTest(){
		
		short s = 1111;
		int i = 2222;
		long l = 333333;
		char c = 'c';
		float f = 444.44f;
		double d = 555.55;
		String string = "     666";

		System.out.println(s);
		System.out.println(i);
		System.out.println(l);
		System.out.println(c);
		System.out.println(f);
		System.out.println(d);
		System.out.println(string);

		System.out.println("**************");

		System.out.println(getShort(getShortBytes(s)));
		System.out.println(getInt(getIntBytes(i)));
		System.out.println(getLong(getLongBytes(l)));
		System.out.println(getChar(getCharBytes(c)));
		System.out.println(getFloat(getFloatBytes(f)));
		System.out.println(getDouble(getDoubleBytes(d)));
		System.out.println(getString(getStringBytes(string)));
		
	}
	
	
	public static void main(String[] args) {
		verifiTest();
		
		System.out.println("finished ... ");
	}
}

2. 小端フォーマットでは、基本タイプはbyte[]と相互に回転します. LittleByteUtil.java
    二つの方法は効率的にあまり差がない.
package com.ysq.util;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.logging.Logger;

/**
 *     
 * java       byte[]     
 * 
 * @author admin
 *
 */
public class LittleByteUtil {
	static Logger logger = Logger.getLogger(LittleByteUtil.class.getName());
	
	static final long fx = 0xffl;
	/**
	 * short   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getShortBytes(short data) {
		byte[] bytes = new byte[2];
		bytes[0] = (byte) (data & fx);
		bytes[1] = (byte) ((data >> 8) & fx);
		return bytes;
	}

	/**
	 * chart   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getCharBytes(char data) {
		byte[] bytes = new byte[2];
		bytes[0] = (byte) (data & fx);
		bytes[1] = (byte) ((data >> 8) & fx);
		return bytes;
	}

	/**
	 * int   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getIntBytes(int data) {
		int length = 4;
		byte[] bytes = new byte[length];
		for (int i = 0; i < length; i++) {
			bytes[i] = (byte) ((data >> (i*8)) & fx);
		}
		return bytes;
	}

	/**
	 * long   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getLongBytes(long data) {
		int length = 8;
		byte[] bytes = new byte[length];
		
		for (int i = 0; i < length; i++) {
			bytes[i] = (byte) ((data >> (i*8)) & fx);
		}
		return bytes;
	}

	/**
	 * float   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getFloatBytes(float data) {
		int intBits = Float.floatToIntBits(data);

		byte[] bytes = getIntBytes(intBits);
		
		return bytes;
	}

	/**
	 * double   byte[]
	 *   
	 * @param data
	 * @return
	 */
	public static byte[] getDoubleBytes(double data) {
		long intBits = Double.doubleToLongBits(data);
		byte[] bytes = getLongBytes(intBits);
		return bytes;
	}

	/**
	 * String   byte[]
	 * 
	 * @param data
	 * @param charsetName
	 * @return
	 */
	public static byte[] getStringBytes(String data, String charsetName) {
		Charset charset = Charset.forName(charsetName);
		byte[] bytes = data.getBytes(charset);
		return bytes;
	}

	/**
	 * String   byte[]
	 * 
	 * @param data
	 * @return
	 */
	public static byte[] getStringBytes(String data) {
		byte[] bytes = null;
		if(data != null){
			bytes = data.getBytes();
		}else{
			bytes = new byte[0];
		}
		return bytes;
	}

	/**
	 * byte[]  short
	 *   
	 * @param bytes
	 * @return
	 */
	public static short getShort(byte[] bytes) {
		short result = (short) ((fx & bytes[0])
				| ((fx & bytes[1]) << 8));
		return result;
	}

	/**
	 * byte[]   char
	 *   
	 * @param bytes
	 * @return
	 */
	public static char getChar(byte[] bytes) {
		char result = (char) ((fx & bytes[0])
				| ((fx & bytes[1]) << 8));
		return result;
	}

	/**
	 * byte[]   int
	 * 
	 * @param bytes
	 * @return
	 */
	public static int getInt(byte[] bytes) {
		int result = (int) ((fx & bytes[0])
			| ((fx & bytes[1]) << 8)
			| ((fx & bytes[2]) << 16)
			| ((fx & bytes[3]) << 24));
		
		return result;
	}

	/**
	 * byte[]   long
	 * 
	 * @param bytes
	 * @return
	 */
	public static long getLong(byte[] bytes) {
		long result = (long)((long)(fx & bytes[0])
				| (long)((fx & bytes[1]) << 8)
				| (long)((fx & bytes[2]) << 16)
				| (long)((fx & bytes[3]) << 24)
				| (long)((fx & bytes[4]) << 32)
				| (long)((fx & bytes[5]) << 40)
				| (long)((fx & bytes[6]) << 48)
				| (long)((fx & bytes[7]) << 56));
		
		return result;
	}

	/**
	 * byte[]   float
	 * 
	 * @param bytes
	 * @return
	 */
	public static float getFloat(byte[] b) {
		int l = getInt(b);
		return Float.intBitsToFloat(l);
	}

	/**
	 * byte[]   double
	 * 
	 * @param bytes
	 * @return
	 */
	public static double getDouble(byte[] bytes) {
		
		long l = getLong(bytes);
		return Double.longBitsToDouble(l);
	}

	/**
	 * byte[]   String
	 * 
	 * @param bytes
	 * @param charsetName
	 * @return
	 */
	public static String getString(byte[] bytes, String charsetName) {
		String result = new String(bytes, Charset.forName(charsetName));
		return result;
	}

	/**
	 * byte[]   String
	 * 
	 * @param bytes
	 * @return
	 */
	public static String getString(byte[] bytes) {
		String result = new String(bytes);
		return result;
	}

	/**
	 *     
	 * 
	 * @param target
	 * @param append
	 * @return
	 */
	public static byte[] appendByte(byte[] target, byte[] append) {
		int originalLength = target.length;
		int appendLength = append.length;
		//      
		int totalLength = originalLength + appendLength;

		target = Arrays.copyOf(target, totalLength);

		System.arraycopy(append, 0, target, originalLength, appendLength);

		return target;
	}
	
	/**
	 *     
	 */
	private static void verifiTest(){
		
		short s = 1111;
		int i = 2222;
		long l = 333333;
		char c = 'c';
		float f = 444.44f;
		double d = 555.55;
		String string = "     666";

		System.out.println(s);
		System.out.println(i);
		System.out.println(l);
		System.out.println(c);
		System.out.println(f);
		System.out.println(d);
		System.out.println(string);

		System.out.println("**************");

		System.out.println(getShort(getShortBytes(s)));
		System.out.println(getInt(getIntBytes(i)));
		System.out.println(getLong(getLongBytes(l)));
		System.out.println(getChar(getCharBytes(c)));
		System.out.println(getFloat(getFloatBytes(f)));
		System.out.println(getDouble(getDoubleBytes(d)));
		System.out.println(getString(getStringBytes(string)));
		
	}
	
	private static void bufferTest(){
		
		long a = 4648097885297469030l;
		
		ByteBuffer buf = ByteBuffer.allocate(8);
		buf.order(ByteOrder.LITTLE_ENDIAN);
		buf.putLong(a);
		
		byte[] bufByte = buf.array();
		
		byte[] bytes = getLongBytes(a);
		
		long ba = getLong(bytes);
		
		System.out.println(bufByte.equals(ba));
		
		System.out.println(ba);
		
	}

	public static void main(String[] args) {

		verifiTest();
		
		bufferTest();
		
		
		System.out.println("finished ... ");
	}
}

3. hbaseパッケージにもBytesツールクラスがあり使いやすいですが、hbaseは多くのものに依存しているので、hbaseのBytesツールクラスを抽出し、大端小段適応を実現できますが、効率的には上記の方法に及ばず、初期化が遅く、この方法はお勧めできませんが、ここで彼を載せます
ソース:
package com.ysq.util;

import java.lang.reflect.Field;
import java.lang.reflect.Method;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.charset.Charset;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Iterator;
import java.util.logging.Level;
import java.util.logging.Logger;
import sun.misc.Unsafe;
import com.ysq.util.BytesUtil.LexicographicalComparerHolder.UnsafeComparer;

/**
 * Utility class that handles byte arrays, conversions to/from other types,
 * comparisons, hash code generation, manufacturing keys for HashMaps or
 * HashSets, etc.
 */
@SuppressWarnings("restriction")
public class BytesUtil {
	static Logger logger = Logger.getLogger(BytesUtil.class.getName());

	// HConstants.UTF8_ENCODING should be updated if this changed
	/** When we encode strings, we always specify UTF8 encoding */
	private static final String UTF8_ENCODING = "UTF-8";

	// HConstants.UTF8_CHARSET should be updated if this changed
	/** When we encode strings, we always specify UTF8 encoding */
	private static final Charset UTF8_CHARSET = Charset.forName(UTF8_ENCODING);

	// HConstants.EMPTY_BYTE_ARRAY should be updated if this changed
	private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];

	// private static final Log LOG = LogFactory.getLog(Bytes.class);

	/**
	 * Size of boolean in bytes
	 */
	public static final int SIZEOF_BOOLEAN = Byte.SIZE / Byte.SIZE;

	/**
	 * Size of int in bytes
	 */
	public static final int SIZEOF_INT = Integer.SIZE / Byte.SIZE;

	/**
	 * Size of long in bytes
	 */
	public static final int SIZEOF_LONG = Long.SIZE / Byte.SIZE;

	/**
	 * Size of short in bytes
	 */
	public static final int SIZEOF_SHORT = Short.SIZE / Byte.SIZE;

	private static final boolean UNSAFE_UNALIGNED = UnsafeAvailChecker.unaligned();

	/**
	 * Returns length of the byte array, returning 0 if the array is null.
	 * Useful for calculating sizes.
	 * 
	 * @param b
	 *            byte array, which can be null
	 * @return 0 if b is null, otherwise returns length
	 */
	final public static int len(byte[] b) {
		return b == null ? 0 : b.length;
	}

	/**
	 * Put bytes at the specified byte array position.
	 * 
	 * @param tgtBytes
	 *            the byte array
	 * @param tgtOffset
	 *            position in the array
	 * @param srcBytes
	 *            array to write out
	 * @param srcOffset
	 *            source offset
	 * @param srcLength
	 *            source length
	 * @return incremented offset
	 */
	public static int putBytes(byte[] tgtBytes, int tgtOffset, byte[] srcBytes, int srcOffset, int srcLength) {
		System.arraycopy(srcBytes, srcOffset, tgtBytes, tgtOffset, srcLength);
		return tgtOffset + srcLength;
	}

	/**
	 * Write a single byte out to the specified byte array position.
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param b
	 *            byte to write out
	 * @return incremented offset
	 */
	public static int putByte(byte[] bytes, int offset, byte b) {
		bytes[offset] = b;
		return offset + 1;
	}

	/**
	 * Add the whole content of the ByteBuffer to the bytes arrays. The
	 * ByteBuffer is modified.
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param buf
	 *            ByteBuffer to write out
	 * @return incremented offset
	 */
	public static int putByteBuffer(byte[] bytes, int offset, ByteBuffer buf) {
		int len = buf.remaining();
		buf.get(bytes, offset, len);
		return offset + len;
	}

	/**
	 * Returns a new byte array, copied from the given {@code buf}, from the
	 * index 0 (inclusive) to the limit (exclusive), regardless of the current
	 * position. The position and the other index parameters are not changed.
	 *
	 * @param buf
	 *            a byte buffer
	 * @return the byte array
	 * @see #getBytes(ByteBuffer)
	 */
	public static byte[] toBytes(ByteBuffer buf) {
		ByteBuffer dup = buf.duplicate();
		dup.position(0);
		return readBytes(dup);
	}

	private static byte[] readBytes(ByteBuffer buf) {
		byte[] result = new byte[buf.remaining()];
		buf.get(result);
		return result;
	}

	/**
	 * @param b
	 *            Presumed UTF-8 encoded byte array.
	 * @return String made from b
	 */
	public static String toString(final byte[] b) {
		if (b == null) {
			return null;
		}
		return toString(b, 0, b.length);
	}

	/**
	 * Joins two byte arrays together using a separator.
	 * 
	 * @param b1
	 *            The first byte array.
	 * @param sep
	 *            The separator to use.
	 * @param b2
	 *            The second byte array.
	 */
	public static String toString(final byte[] b1, String sep, final byte[] b2) {
		return toString(b1, 0, b1.length) + sep + toString(b2, 0, b2.length);
	}

	/**
	 * This method will convert utf8 encoded bytes into a string. If the given
	 * byte array is null, this method will return null.
	 * 
	 * @param b
	 *            Presumed UTF-8 encoded byte array.
	 * @param off
	 *            offset into array
	 * @return String made from b or null
	 */
	public static String toString(final byte[] b, int off) {
		if (b == null) {
			return null;
		}
		int len = b.length - off;
		if (len <= 0) {
			return "";
		}
		return new String(b, off, len, UTF8_CHARSET);
	}

	/**
	 * This method will convert utf8 encoded bytes into a string. If the given
	 * byte array is null, this method will return null.
	 *
	 * @param b
	 *            Presumed UTF-8 encoded byte array.
	 * @param off
	 *            offset into array
	 * @param len
	 *            length of utf-8 sequence
	 * @return String made from b or null
	 */
	public static String toString(final byte[] b, int off, int len) {
		if (b == null) {
			return null;
		}
		if (len == 0) {
			return "";
		}
		return new String(b, off, len, UTF8_CHARSET);
	}

	/**
	 * Write a printable representation of a byte array.
	 *
	 * @param b
	 *            byte array
	 * @return string
	 * @see #toStringBinary(byte[], int, int)
	 */
	public static String toStringBinary(final byte[] b) {
		if (b == null)
			return "null";
		return toStringBinary(b, 0, b.length);
	}

	/**
	 * Converts the given byte buffer to a printable representation, from the
	 * index 0 (inclusive) to the limit (exclusive), regardless of the current
	 * position. The position and the other index parameters are not changed.
	 *
	 * @param buf
	 *            a byte buffer
	 * @return a string representation of the buffer's binary contents
	 * @see #toBytes(ByteBuffer)
	 * @see #getBytes(ByteBuffer)
	 */
	public static String toStringBinary(ByteBuffer buf) {
		if (buf == null)
			return "null";
		if (buf.hasArray()) {
			return toStringBinary(buf.array(), buf.arrayOffset(), buf.limit());
		}
		return toStringBinary(toBytes(buf));
	}

	/**
	 * Write a printable representation of a byte array. Non-printable
	 * characters are hex escaped in the format \\x%02X, eg: \x00 \x05 etc
	 *
	 * @param b
	 *            array to write out
	 * @param off
	 *            offset to start at
	 * @param len
	 *            length to write
	 * @return string output
	 */
	public static String toStringBinary(final byte[] b, int off, int len) {
		StringBuilder result = new StringBuilder();
		// Just in case we are passed a 'len' that is > buffer length...
		if (off >= b.length)
			return result.toString();
		if (off + len > b.length)
			len = b.length - off;
		for (int i = off; i < off + len; ++i) {
			int ch = b[i] & 0xFF;
			if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z')
					|| " `~!@#$%^&*()-_=+[]{}|;:'\",.<>/?".indexOf(ch) >= 0) {
				result.append((char) ch);
			} else {
				result.append(String.format("\\x%02X", ch));
			}
		}
		return result.toString();
	}

	private static boolean isHexDigit(char c) {
		return (c >= 'A' && c <= 'F') || (c >= '0' && c <= '9');
	}

	/**
	 * Takes a ASCII digit in the range A-F0-9 and returns the corresponding
	 * integer/ordinal value.
	 * 
	 * @param ch
	 *            The hex digit.
	 * @return The converted hex value as a byte.
	 */
	public static byte toBinaryFromHex(byte ch) {
		if (ch >= 'A' && ch <= 'F')
			return (byte) ((byte) 10 + (byte) (ch - 'A'));
		// else
		return (byte) (ch - '0');
	}

	public static byte[] toBytesBinary(String in) {
		// this may be bigger than we need, but let's be safe.
		byte[] b = new byte[in.length()];
		int size = 0;
		for (int i = 0; i < in.length(); ++i) {
			char ch = in.charAt(i);
			if (ch == '\\' && in.length() > i + 1 && in.charAt(i + 1) == 'x') {
				// ok, take next 2 hex digits.
				char hd1 = in.charAt(i + 2);
				char hd2 = in.charAt(i + 3);

				// they need to be A-F0-9:
				if (!isHexDigit(hd1) || !isHexDigit(hd2)) {
					// bogus escape code, ignore:
					continue;
				}
				// turn hex ASCII digit -> number
				byte d = (byte) ((toBinaryFromHex((byte) hd1) << 4) + toBinaryFromHex((byte) hd2));

				b[size++] = d;
				i += 3; // skip 3
			} else {
				b[size++] = (byte) ch;
			}
		}
		// resize:
		byte[] b2 = new byte[size];
		System.arraycopy(b, 0, b2, 0, size);
		return b2;
	}

	/**
	 * Converts a string to a UTF-8 byte array.
	 * 
	 * @param s
	 *            string
	 * @return the byte array
	 */
	public static byte[] toBytes(String s) {
		return s.getBytes(UTF8_CHARSET);
	}

	/**
	 * Convert a boolean to a byte array. True becomes -1 and false becomes 0.
	 *
	 * @param b
	 *            value
	 * @return b encoded in a byte array.
	 */
	public static byte[] toBytes(final boolean b) {
		return new byte[] { b ? (byte) -1 : (byte) 0 };
	}

	/**
	 * Reverses {@link #toBytes(boolean)}
	 * 
	 * @param b
	 *            array
	 * @return True or false.
	 */
	public static boolean toBoolean(final byte[] b) {
		if (b.length != 1) {
			throw new IllegalArgumentException("Array has wrong size: " + b.length);
		}
		return b[0] != (byte) 0;
	}

	/**
	 * Convert a long value to a byte array using big-endian.
	 *
	 * @param val
	 *            value to convert
	 * @return the byte array
	 */
	public static byte[] toBytes(long val) {
		byte[] b = new byte[8];
		for (int i = 7; i > 0; i--) {
			b[i] = (byte) val;
			val >>>= 8;
		}
		b[0] = (byte) val;
		return b;
	}

	/**
	 * Converts a byte array to a long value. Reverses {@link #toBytes(long)}
	 * 
	 * @param bytes
	 *            array
	 * @return the long value
	 */
	public static long toLong(byte[] bytes) {
		return toLong(bytes, 0, SIZEOF_LONG);
	}

	/**
	 * Converts a byte array to a long value. Assumes there will be
	 * {@link #SIZEOF_LONG} bytes available.
	 *
	 * @param bytes
	 *            bytes
	 * @param offset
	 *            offset
	 * @return the long value
	 */
	public static long toLong(byte[] bytes, int offset) {
		return toLong(bytes, offset, SIZEOF_LONG);
	}

	/**
	 * Converts a byte array to a long value.
	 *
	 * @param bytes
	 *            array of bytes
	 * @param offset
	 *            offset into array
	 * @param length
	 *            length of data (must be {@link #SIZEOF_LONG})
	 * @return the long value
	 * @throws IllegalArgumentException
	 *             if length is not {@link #SIZEOF_LONG} or if there's not
	 *             enough room in the array at the offset indicated.
	 */
	public static long toLong(byte[] bytes, int offset, final int length) {
		if (length != SIZEOF_LONG || offset + length > bytes.length) {
			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_LONG);
		}
		if (UNSAFE_UNALIGNED) {
			return toLongUnsafe(bytes, offset);
		} else {
			long l = 0;
			for (int i = offset; i < offset + length; i++) {
				l <<= 8;
				l ^= bytes[i] & 0xFF;
			}
			return l;
		}
	}

	private static IllegalArgumentException explainWrongLengthOrOffset(final byte[] bytes, final int offset,
			final int length, final int expectedLength) {
		String reason;
		if (length != expectedLength) {
			reason = "Wrong length: " + length + ", expected " + expectedLength;
		} else {
			reason = "offset (" + offset + ") + length (" + length + ") exceed the" + " capacity of the array: "
					+ bytes.length;
		}
		return new IllegalArgumentException(reason);
	}

	/**
	 * Presumes float encoded as IEEE 754 floating-point "single format"
	 * 
	 * @param bytes
	 *            byte array
	 * @return Float made from passed byte array.
	 */
	public static float toFloat(byte[] bytes) {
		return toFloat(bytes, 0);
	}

	/**
	 * Presumes float encoded as IEEE 754 floating-point "single format"
	 * 
	 * @param bytes
	 *            array to convert
	 * @param offset
	 *            offset into array
	 * @return Float made from passed byte array.
	 */
	public static float toFloat(byte[] bytes, int offset) {
		int ti = toInt(bytes, offset, SIZEOF_INT);

		return Float.intBitsToFloat(ti);
	}

	/**
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset to write to
	 * @param f
	 *            float value
	 * @return New offset in bytes
	 */
	public static int putFloat(byte[] bytes, int offset, float f) {
		return putInt(bytes, offset, Float.floatToRawIntBits(f));
	}

	/**
	 * @param f
	 *            float value
	 * @return the float represented as byte []
	 */
	public static byte[] toBytes(final float f) {
		// Encode it as int
		return toBytes(Float.floatToRawIntBits(f));
	}

	/**
	 * @param bytes
	 *            byte array
	 * @return Return double made from passed bytes.
	 */
	public static double toDouble(final byte[] bytes) {
		return toDouble(bytes, 0);
	}

	/**
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset where double is
	 * @return Return double made from passed bytes.
	 */
	public static double toDouble(final byte[] bytes, final int offset) {
		return Double.longBitsToDouble(toLong(bytes, offset, SIZEOF_LONG));
	}

	/**
	 * Serialize a double as the IEEE 754 double format output. The resultant
	 * array will be 8 bytes long.
	 *
	 * @param d
	 *            value
	 * @return the double represented as byte []
	 */
	public static byte[] toBytes(final double d) {
		// Encode it as a long
		return toBytes(Double.doubleToRawLongBits(d));
	}

	/**
	 * Convert an int value to a byte array. Big-endian. Same as what
	 * DataOutputStream.writeInt does.
	 *
	 * @param val
	 *            value
	 * @return the byte array
	 */
	public static byte[] toBytes(int val) {
		byte[] b = new byte[4];
		for (int i = 3; i > 0; i--) {
			b[i] = (byte) val;
			val >>>= 8;
		}
		b[0] = (byte) val;
		return b;
	}

	/**
	 * Converts a byte array to an int value
	 * 
	 * @param bytes
	 *            byte array
	 * @return the int value
	 */
	public static int toInt(byte[] bytes) {
		return toInt(bytes, 0, SIZEOF_INT);
	}

	/**
	 * Converts a byte array to an int value
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @return the int value
	 */
	public static int toInt(byte[] bytes, int offset) {
		return toInt(bytes, offset, SIZEOF_INT);
	}

	/**
	 * Converts a byte array to an int value
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @param length
	 *            length of int (has to be {@link #SIZEOF_INT})
	 * @return the int value
	 * @throws IllegalArgumentException
	 *             if length is not {@link #SIZEOF_INT} or if there's not enough
	 *             room in the array at the offset indicated.
	 */
	public static int toInt(byte[] bytes, int offset, final int length) {
		if (length != SIZEOF_INT || offset + length > bytes.length) {
			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_INT);
		}
		if (UNSAFE_UNALIGNED) {
			return toIntUnsafe(bytes, offset);
		} else {
			int n = 0;
			for (int i = offset; i < (offset + length); i++) {
				n <<= 8;
				n ^= bytes[i] & 0xFF;
			}
			return n;
		}
	}

	/**
	 * Converts a byte array to an int value (Unsafe version)
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @return the int value
	 */
	public static int toIntUnsafe(byte[] bytes, int offset) {
		if (UnsafeComparer.littleEndian) {
			return Integer.reverseBytes(
					UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
		} else {
			return UnsafeComparer.theUnsafe.getInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
		}
	}

	/**
	 * Converts a byte array to an short value (Unsafe version)
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @return the short value
	 */
	public static short toShortUnsafe(byte[] bytes, int offset) {
		if (UnsafeComparer.littleEndian) {
			return Short.reverseBytes(
					UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
		} else {
			return UnsafeComparer.theUnsafe.getShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
		}
	}

	/**
	 * Converts a byte array to an long value (Unsafe version)
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @return the long value
	 */
	public static long toLongUnsafe(byte[] bytes, int offset) {
		if (UnsafeComparer.littleEndian) {
			return Long.reverseBytes(
					UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET));
		} else {
			return UnsafeComparer.theUnsafe.getLong(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET);
		}
	}

	/**
	 * Converts a byte array to an int value
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @param length
	 *            how many bytes should be considered for creating int
	 * @return the int value
	 * @throws IllegalArgumentException
	 *             if there's not enough room in the array at the offset
	 *             indicated.
	 */
	public static int readAsInt(byte[] bytes, int offset, final int length) {
		if (offset + length > bytes.length) {
			throw new IllegalArgumentException("offset (" + offset + ") + length (" + length + ") exceed the"
					+ " capacity of the array: " + bytes.length);
		}
		int n = 0;
		for (int i = offset; i < (offset + length); i++) {
			n <<= 8;
			n ^= bytes[i] & 0xFF;
		}
		return n;
	}

	/**
	 * Put an int value out to the specified byte array position.
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            int to write out
	 * @return incremented offset
	 * @throws IllegalArgumentException
	 *             if the byte array given doesn't have enough room at the
	 *             offset specified.
	 */
	public static int putInt(byte[] bytes, int offset, int val) {
		if (bytes.length - offset < SIZEOF_INT) {
			throw new IllegalArgumentException(
					"Not enough room to put an int at" + " offset " + offset + " in a " + bytes.length + " byte array");
		}
		if (UNSAFE_UNALIGNED) {
			return putIntUnsafe(bytes, offset, val);
		} else {
			for (int i = offset + 3; i > offset; i--) {
				bytes[i] = (byte) val;
				val >>>= 8;
			}
			bytes[offset] = (byte) val;
			return offset + SIZEOF_INT;
		}
	}

	/**
	 * Put an int value out to the specified byte array position (Unsafe).
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            int to write out
	 * @return incremented offset
	 */
	public static int putIntUnsafe(byte[] bytes, int offset, int val) {
		if (UnsafeComparer.littleEndian) {
			val = Integer.reverseBytes(val);
		}
		UnsafeComparer.theUnsafe.putInt(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val);
		return offset + SIZEOF_INT;
	}

	/**
	 * Convert a short value to a byte array of {@link #SIZEOF_SHORT} bytes
	 * long.
	 * 
	 * @param val
	 *            value
	 * @return the byte array
	 */
	public static byte[] toBytes(short val) {
		byte[] b = new byte[SIZEOF_SHORT];
		b[1] = (byte) val;
		val >>= 8;
		b[0] = (byte) val;
		return b;
	}

	/**
	 * Converts a byte array to a short value
	 * 
	 * @param bytes
	 *            byte array
	 * @return the short value
	 */
	public static short toShort(byte[] bytes) {
		return toShort(bytes, 0, SIZEOF_SHORT);
	}

	/**
	 * Converts a byte array to a short value
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @return the short value
	 */
	public static short toShort(byte[] bytes, int offset) {
		return toShort(bytes, offset, SIZEOF_SHORT);
	}

	/**
	 * Converts a byte array to a short value
	 * 
	 * @param bytes
	 *            byte array
	 * @param offset
	 *            offset into array
	 * @param length
	 *            length, has to be {@link #SIZEOF_SHORT}
	 * @return the short value
	 * @throws IllegalArgumentException
	 *             if length is not {@link #SIZEOF_SHORT} or if there's not
	 *             enough room in the array at the offset indicated.
	 */
	public static short toShort(byte[] bytes, int offset, final int length) {
		if (length != SIZEOF_SHORT || offset + length > bytes.length) {
			throw explainWrongLengthOrOffset(bytes, offset, length, SIZEOF_SHORT);
		}
		if (UNSAFE_UNALIGNED) {
			return toShortUnsafe(bytes, offset);
		} else {
			short n = 0;
			n ^= bytes[offset] & 0xFF;
			n <<= 8;
			n ^= bytes[offset + 1] & 0xFF;
			return n;
		}
	}

	/**
	 * Returns a new byte array, copied from the given {@code buf}, from the
	 * position (inclusive) to the limit (exclusive). The position and the other
	 * index parameters are not changed.
	 *
	 * @param buf
	 *            a byte buffer
	 * @return the byte array
	 * @see #toBytes(ByteBuffer)
	 */
	public static byte[] getBytes(ByteBuffer buf) {
		return readBytes(buf.duplicate());
	}

	/**
	 * Put a short value out to the specified byte array position.
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            short to write out
	 * @return incremented offset
	 * @throws IllegalArgumentException
	 *             if the byte array given doesn't have enough room at the
	 *             offset specified.
	 */
	public static int putShort(byte[] bytes, int offset, short val) {
		if (bytes.length - offset < SIZEOF_SHORT) {
			throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a "
					+ bytes.length + " byte array");
		}
		if (UNSAFE_UNALIGNED) {
			return putShortUnsafe(bytes, offset, val);
		} else {
			bytes[offset + 1] = (byte) val;
			val >>= 8;
			bytes[offset] = (byte) val;
			return offset + SIZEOF_SHORT;
		}
	}

	/**
	 * Put a short value out to the specified byte array position (Unsafe).
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            short to write out
	 * @return incremented offset
	 */
	public static int putShortUnsafe(byte[] bytes, int offset, short val) {
		if (UnsafeComparer.littleEndian) {
			val = Short.reverseBytes(val);
		}
		UnsafeComparer.theUnsafe.putShort(bytes, (long) offset + UnsafeComparer.BYTE_ARRAY_BASE_OFFSET, val);
		return offset + SIZEOF_SHORT;
	}

	/**
	 * Put an int value as short out to the specified byte array position. Only
	 * the lower 2 bytes of the short will be put into the array. The caller of
	 * the API need to make sure they will not loose the value by doing so. This
	 * is useful to store an unsigned short which is represented as int in other
	 * parts.
	 * 
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            value to write out
	 * @return incremented offset
	 * @throws IllegalArgumentException
	 *             if the byte array given doesn't have enough room at the
	 *             offset specified.
	 */
	public static int putAsShort(byte[] bytes, int offset, int val) {
		if (bytes.length - offset < SIZEOF_SHORT) {
			throw new IllegalArgumentException("Not enough room to put a short at" + " offset " + offset + " in a "
					+ bytes.length + " byte array");
		}
		bytes[offset + 1] = (byte) val;
		val >>= 8;
		bytes[offset] = (byte) val;
		return offset + SIZEOF_SHORT;
	}

	/**
	 * Convert a BigDecimal value to a byte array
	 *
	 * @param val
	 * @return the byte array
	 */
	public static byte[] toBytes(BigDecimal val) {
		byte[] valueBytes = val.unscaledValue().toByteArray();
		byte[] result = new byte[valueBytes.length + SIZEOF_INT];
		int offset = putInt(result, 0, val.scale());
		putBytes(result, offset, valueBytes, 0, valueBytes.length);
		return result;
	}

	/**
	 * Converts a byte array to a BigDecimal
	 *
	 * @param bytes
	 * @return the char value
	 */
	public static BigDecimal toBigDecimal(byte[] bytes) {
		return toBigDecimal(bytes, 0, bytes.length);
	}

	/**
	 * Converts a byte array to a BigDecimal value
	 *
	 * @param bytes
	 * @param offset
	 * @param length
	 * @return the char value
	 */
	public static BigDecimal toBigDecimal(byte[] bytes, int offset, final int length) {
		if (bytes == null || length < SIZEOF_INT + 1 || (offset + length > bytes.length)) {
			return null;
		}

		int scale = toInt(bytes, offset);
		byte[] tcBytes = new byte[length - SIZEOF_INT];
		System.arraycopy(bytes, offset + SIZEOF_INT, tcBytes, 0, length - SIZEOF_INT);
		return new BigDecimal(new BigInteger(tcBytes), scale);
	}

	/**
	 * Put a BigDecimal value out to the specified byte array position.
	 *
	 * @param bytes
	 *            the byte array
	 * @param offset
	 *            position in the array
	 * @param val
	 *            BigDecimal to write out
	 * @return incremented offset
	 */
	public static int putBigDecimal(byte[] bytes, int offset, BigDecimal val) {
		if (bytes == null) {
			return offset;
		}

		byte[] valueBytes = val.unscaledValue().toByteArray();
		byte[] result = new byte[valueBytes.length + SIZEOF_INT];
		offset = putInt(result, offset, val.scale());
		return putBytes(result, offset, valueBytes, 0, valueBytes.length);
	}

	/**
	 * @param left
	 *            left operand
	 * @param right
	 *            right operand
	 * @return 0 if equal, < 0 if left is less than right, etc.
	 */
	public static int compareTo(final byte[] left, final byte[] right) {
		return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, 0, left.length, right, 0, right.length);
	}

	/**
	 * Lexicographically compare two arrays.
	 *
	 * @param buffer1
	 *            left operand
	 * @param buffer2
	 *            right operand
	 * @param offset1
	 *            Where to start comparing in the left buffer
	 * @param offset2
	 *            Where to start comparing in the right buffer
	 * @param length1
	 *            How much to compare from the left buffer
	 * @param length2
	 *            How much to compare from the right buffer
	 * @return 0 if equal, < 0 if left is less than right, etc.
	 */
	public static int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) {
		return LexicographicalComparerHolder.BEST_COMPARER.compareTo(buffer1, offset1, length1, buffer2, offset2,
				length2);
	}

	interface Comparer {
		int compareTo(T buffer1, int offset1, int length1, T buffer2, int offset2, int length2);
	}

	static Comparer lexicographicalComparerJavaImpl() {
		return LexicographicalComparerHolder.PureJavaComparer.INSTANCE;
	}

	/**
	 * Provides a lexicographical comparer implementation; either a Java
	 * implementation or a faster implementation based on {@link Unsafe}.
	 *
	 * 

* Uses reflection to gracefully fall back to the Java implementation if * {@code Unsafe} isn't available. */ static class LexicographicalComparerHolder { static final String UNSAFE_COMPARER_NAME = LexicographicalComparerHolder.class.getName() + "$UnsafeComparer"; static final Comparer BEST_COMPARER = getBestComparer(); /** * Returns the Unsafe-using Comparer, or falls back to the pure-Java * implementation if unable to do so. */ static Comparer getBestComparer() { try { Class> theClass = Class.forName(UNSAFE_COMPARER_NAME); // yes, UnsafeComparer does implement Comparer @SuppressWarnings("unchecked") Comparer comparer = (Comparer) theClass.getEnumConstants()[0]; return comparer; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparerJavaImpl(); } } enum PureJavaComparer implements Comparer { INSTANCE; @Override public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) { // Short circuit equal case if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { return 0; } // Bring WritableComparator code local int end1 = offset1 + length1; int end2 = offset2 + length2; for (int i = offset1, j = offset2; i < end1 && j < end2; i++, j++) { int a = (buffer1[i] & 0xff); int b = (buffer2[j] & 0xff); if (a != b) { return a - b; } } return length1 - length2; } } enum UnsafeComparer implements Comparer { INSTANCE; static final Unsafe theUnsafe; /** The offset to the first element in a byte array. */ static final int BYTE_ARRAY_BASE_OFFSET; static { if (UNSAFE_UNALIGNED) { theUnsafe = UnsafeAccess.theUnsafe; } else { // It doesn't matter what we throw; // it's swallowed in getBestComparer(). throw new Error(); } BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); // sanity check - this should never fail if (theUnsafe.arrayIndexScale(byte[].class) != 1) { throw new AssertionError(); } } static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); /** * Returns true if x1 is less than x2, when both values are treated * as unsigned long. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedLong(long x1, long x2) { if (littleEndian) { x1 = Long.reverseBytes(x1); x2 = Long.reverseBytes(x2); } return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE); } /** * Returns true if x1 is less than x2, when both values are treated * as unsigned int. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedInt(int x1, int x2) { if (littleEndian) { x1 = Integer.reverseBytes(x1); x2 = Integer.reverseBytes(x2); } return (x1 & 0xffffffffL) < (x2 & 0xffffffffL); } /** * Returns true if x1 is less than x2, when both values are treated * as unsigned short. Both values are passed as is read by Unsafe. * When platform is Little Endian, have to convert to corresponding * Big Endian value and then do compare. We do all writes in Big * Endian format. */ static boolean lessThanUnsignedShort(short x1, short x2) { if (littleEndian) { x1 = Short.reverseBytes(x1); x2 = Short.reverseBytes(x2); } return (x1 & 0xffff) < (x2 & 0xffff); } /** * Checks if Unsafe is available * * @return true, if available, false - otherwise */ public static boolean isAvailable() { return theUnsafe != null; } /** * Lexicographically compare two arrays. * * @param buffer1 * left operand * @param buffer2 * right operand * @param offset1 * Where to start comparing in the left buffer * @param offset2 * Where to start comparing in the right buffer * @param length1 * How much to compare from the left buffer * @param length2 * How much to compare from the right buffer * @return 0 if equal, < 0 if left is less than right, etc. */ @Override public int compareTo(byte[] buffer1, int offset1, int length1, byte[] buffer2, int offset2, int length2) { // Short circuit equal case if (buffer1 == buffer2 && offset1 == offset2 && length1 == length2) { return 0; } final int minLength = Math.min(length1, length2); final int minWords = minLength / SIZEOF_LONG; final long offset1Adj = offset1 + BYTE_ARRAY_BASE_OFFSET; final long offset2Adj = offset2 + BYTE_ARRAY_BASE_OFFSET; /* * Compare 8 bytes at a time. Benchmarking shows comparing 8 * bytes at a time is no slower than comparing 4 bytes at a time * even on 32-bit. On the other hand, it is substantially faster * on 64-bit. */ // This is the end offset of long parts. int j = minWords << 3; // Same as minWords * SIZEOF_LONG for (int i = 0; i < j; i += SIZEOF_LONG) { long lw = theUnsafe.getLong(buffer1, offset1Adj + (long) i); long rw = theUnsafe.getLong(buffer2, offset2Adj + (long) i); long diff = lw ^ rw; if (diff != 0) { return lessThanUnsignedLong(lw, rw) ? -1 : 1; } } int offset = j; if (minLength - offset >= SIZEOF_INT) { int il = theUnsafe.getInt(buffer1, offset1Adj + offset); int ir = theUnsafe.getInt(buffer2, offset2Adj + offset); if (il != ir) { return lessThanUnsignedInt(il, ir) ? -1 : 1; } offset += SIZEOF_INT; } if (minLength - offset >= SIZEOF_SHORT) { short sl = theUnsafe.getShort(buffer1, offset1Adj + offset); short sr = theUnsafe.getShort(buffer2, offset2Adj + offset); if (sl != sr) { return lessThanUnsignedShort(sl, sr) ? -1 : 1; } offset += SIZEOF_SHORT; } if (minLength - offset == 1) { int a = (buffer1[(int) (offset1 + offset)] & 0xff); int b = (buffer2[(int) (offset2 + offset)] & 0xff); if (a != b) { return a - b; } } return length1 - length2; } } } /** * @param left * left operand * @param right * right operand * @return True if equal */ public static boolean equals(final byte[] left, final byte[] right) { // Could use Arrays.equals? // noinspection SimplifiableConditionalExpression if (left == right) return true; if (left == null || right == null) return false; if (left.length != right.length) return false; if (left.length == 0) return true; // Since we're often comparing adjacent sorted data, // it's usual to have equal arrays except for the very last byte // so check that first if (left[left.length - 1] != right[right.length - 1]) return false; return compareTo(left, right) == 0; } public static boolean equals(final byte[] left, int leftOffset, int leftLen, final byte[] right, int rightOffset, int rightLen) { // short circuit case if (left == right && leftOffset == rightOffset && leftLen == rightLen) { return true; } // different lengths fast check if (leftLen != rightLen) { return false; } if (leftLen == 0) { return true; } // Since we're often comparing adjacent sorted data, // it's usual to have equal arrays except for the very last byte // so check that first if (left[leftOffset + leftLen - 1] != right[rightOffset + rightLen - 1]) return false; return LexicographicalComparerHolder.BEST_COMPARER.compareTo(left, leftOffset, leftLen, right, rightOffset, rightLen) == 0; } /** * @param a * left operand * @param buf * right operand * @return True if equal */ public static boolean equals(byte[] a, ByteBuffer buf) { if (a == null) return buf == null; if (buf == null) return false; if (a.length != buf.remaining()) return false; // Thou shalt not modify the original byte buffer in what should be read // only operations. ByteBuffer b = buf.duplicate(); for (byte anA : a) { if (anA != b.get()) { return false; } } return true; } /** * Return true if the byte array on the right is a prefix of the byte array * on the left. */ public static boolean startsWith(byte[] bytes, byte[] prefix) { return bytes != null && prefix != null && bytes.length >= prefix.length && LexicographicalComparerHolder.BEST_COMPARER.compareTo(bytes, 0, prefix.length, prefix, 0, prefix.length) == 0; } /** * @param a * lower half * @param b * upper half * @return New array that has a in lower half and b in upper half. */ public static byte[] add(final byte[] a, final byte[] b) { return add(a, b, EMPTY_BYTE_ARRAY); } /** * @param a * first third * @param b * second third * @param c * third third * @return New array made from a, b and c */ public static byte[] add(final byte[] a, final byte[] b, final byte[] c) { byte[] result = new byte[a.length + b.length + c.length]; System.arraycopy(a, 0, result, 0, a.length); System.arraycopy(b, 0, result, a.length, b.length); System.arraycopy(c, 0, result, a.length + b.length, c.length); return result; } /** * @param arrays * all the arrays to concatenate together. * @return New array made from the concatenation of the given arrays. */ public static byte[] add(final byte[][] arrays) { int length = 0; for (int i = 0; i < arrays.length; i++) { length += arrays[i].length; } byte[] result = new byte[length]; int index = 0; for (int i = 0; i < arrays.length; i++) { System.arraycopy(arrays[i], 0, result, index, arrays[i].length); index += arrays[i].length; } return result; } /** * @param a * array * @param length * amount of bytes to grab * @return First length bytes from a */ public static byte[] head(final byte[] a, final int length) { if (a.length < length) { return null; } byte[] result = new byte[length]; System.arraycopy(a, 0, result, 0, length); return result; } /** * @param a * array * @param length * amount of bytes to snarf * @return Last length bytes from a */ public static byte[] tail(final byte[] a, final int length) { if (a.length < length) { return null; } byte[] result = new byte[length]; System.arraycopy(a, a.length - length, result, 0, length); return result; } /** * @param a * array * @param length * new array size * @return Value in a plus length prepended 0 * bytes */ public static byte[] padHead(final byte[] a, final int length) { byte[] padding = new byte[length]; for (int i = 0; i < length; i++) { padding[i] = 0; } return add(padding, a); } /** * @param a * array * @param length * new array size * @return Value in a plus length appended 0 bytes */ public static byte[] padTail(final byte[] a, final int length) { byte[] padding = new byte[length]; for (int i = 0; i < length; i++) { padding[i] = 0; } return add(a, padding); } /** * Split passed range. Expensive operation relatively. Uses BigInteger math. * Useful splitting ranges for MapReduce jobs. * * @param a * Beginning of range * @param b * End of range * @param num * Number of times to split range. Pass 1 if you want to split * the range in two; i.e. one split. * @return Array of dividing values */ public static byte[][] split(final byte[] a, final byte[] b, final int num) { return split(a, b, false, num); } /** * Split passed range. Expensive operation relatively. Uses BigInteger math. * Useful splitting ranges for MapReduce jobs. * * @param a * Beginning of range * @param b * End of range * @param inclusive * Whether the end of range is prefix-inclusive or is considered * an exclusive boundary. Automatic splits are generally * exclusive and manual splits with an explicit range utilize an * inclusive end of range. * @param num * Number of times to split range. Pass 1 if you want to split * the range in two; i.e. one split. * @return Array of dividing values */ public static byte[][] split(final byte[] a, final byte[] b, boolean inclusive, final int num) { byte[][] ret = new byte[num + 2][]; int i = 0; Iterable iter = iterateOnSplits(a, b, inclusive, num); if (iter == null) return null; for (byte[] elem : iter) { ret[i++] = elem; } return ret; } /** * Iterate over keys within the passed range, splitting at an [a,b) * boundary. */ public static Iterable iterateOnSplits(final byte[] a, final byte[] b, final int num) { return iterateOnSplits(a, b, false, num); } /** * Iterate over keys within the passed range. */ public static Iterable iterateOnSplits(final byte[] a, final byte[] b, boolean inclusive, final int num) { byte[] aPadded; byte[] bPadded; if (a.length < b.length) { aPadded = padTail(a, b.length - a.length); bPadded = b; } else if (b.length < a.length) { aPadded = a; bPadded = padTail(b, a.length - b.length); } else { aPadded = a; bPadded = b; } if (compareTo(aPadded, bPadded) >= 0) { throw new IllegalArgumentException("b <= a"); } if (num <= 0) { throw new IllegalArgumentException("num cannot be <= 0"); } byte[] prependHeader = { 1, 0 }; final BigInteger startBI = new BigInteger(add(prependHeader, aPadded)); final BigInteger stopBI = new BigInteger(add(prependHeader, bPadded)); BigInteger diffBI = stopBI.subtract(startBI); if (inclusive) { diffBI = diffBI.add(BigInteger.ONE); } final BigInteger splitsBI = BigInteger.valueOf(num + 1); // when diffBI < splitBI, use an additional byte to increase diffBI if (diffBI.compareTo(splitsBI) < 0) { byte[] aPaddedAdditional = new byte[aPadded.length + 1]; byte[] bPaddedAdditional = new byte[bPadded.length + 1]; for (int i = 0; i < aPadded.length; i++) { aPaddedAdditional[i] = aPadded[i]; } for (int j = 0; j < bPadded.length; j++) { bPaddedAdditional[j] = bPadded[j]; } aPaddedAdditional[aPadded.length] = 0; bPaddedAdditional[bPadded.length] = 0; return iterateOnSplits(aPaddedAdditional, bPaddedAdditional, inclusive, num); } final BigInteger intervalBI; try { intervalBI = diffBI.divide(splitsBI); } catch (Exception e) { // LOG.error("Exception caught during division", e); logger.log(Level.SEVERE, "Exception caught during division", e); return null; } final Iterator iterator = new Iterator() { private int i = -1; @Override public boolean hasNext() { return i < num + 1; } @Override public byte[] next() { i++; if (i == 0) return a; if (i == num + 1) return b; BigInteger curBI = startBI.add(intervalBI.multiply(BigInteger.valueOf(i))); byte[] padded = curBI.toByteArray(); if (padded[1] == 0) padded = tail(padded, padded.length - 2); else padded = tail(padded, padded.length - 1); return padded; } @Override public void remove() { throw new UnsupportedOperationException(); } }; return new Iterable() { @Override public Iterator iterator() { return iterator; } }; } /** * @param bytes * array to hash * @param offset * offset to start from * @param length * length to hash */ public static int hashCode(byte[] bytes, int offset, int length) { int hash = 1; for (int i = offset; i < offset + length; i++) hash = (31 * hash) + (int) bytes[i]; return hash; } /** * @param t * operands * @return Array of byte arrays made from passed array of Text */ public static byte[][] toByteArrays(final String[] t) { byte[][] result = new byte[t.length][]; for (int i = 0; i < t.length; i++) { result[i] = toBytes(t[i]); } return result; } /** * @param t * operands * @return Array of binary byte arrays made from passed array of binary * strings */ public static byte[][] toBinaryByteArrays(final String[] t) { byte[][] result = new byte[t.length][]; for (int i = 0; i < t.length; i++) { result[i] = toBytesBinary(t[i]); } return result; } /** * @param column * operand * @return A byte array of a byte array where first and only entry is * column */ public static byte[][] toByteArrays(final String column) { return toByteArrays(toBytes(column)); } /** * @param column * operand * @return A byte array of a byte array where first and only entry is * column */ public static byte[][] toByteArrays(final byte[] column) { byte[][] result = new byte[1][]; result[0] = column; return result; } } class UnsafeAvailChecker { static final Logger logger = Logger.getLogger(UnsafeAvailChecker.class.getName()); private static final String CLASS_NAME = "sun.misc.Unsafe"; private static boolean avail = false; private static boolean unaligned = false; static { avail = AccessController.doPrivileged(new PrivilegedAction() { @Override public Boolean run() { try { Class> clazz = Class.forName(CLASS_NAME); Field f = clazz.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null) != null; } catch (Throwable e) { logger.log(Level.WARNING, "sun.misc.Unsafe is not available/accessible", e); } return false; } }); // When Unsafe itself is not available/accessible consider unaligned as // false. if (avail) { try { // Using java.nio.Bits#unaligned() to check for unaligned-access // capability Class> clazz = Class.forName("java.nio.Bits"); Method m = clazz.getDeclaredMethod("unaligned"); m.setAccessible(true); unaligned = (Boolean) m.invoke(null); } catch (Exception e) { logger.log(Level.WARNING, "java.nio.Bits#unaligned() check failed." + "Unsafe based read/write of primitive types won't be used", e); } } } /** * @return true when running JVM is having sun's Unsafe package available in * it and underlying system having unaligned-access capability. */ public static boolean unaligned() { return unaligned; } } @SuppressWarnings("restriction") final class UnsafeAccess { static final Logger logger = Logger.getLogger(UnsafeAccess.class.getName()); public static final Unsafe theUnsafe; static { theUnsafe = (Unsafe) AccessController.doPrivileged(new PrivilegedAction() { @Override public Object run() { try { Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null); } catch (Throwable e) { logger.log(Level.WARNING, "sun.misc.Unsafe is not accessible", e); } return null; } }); } }


転載先:https://www.cnblogs.com/moonciki/p/8145834.html