強化学習シリーズ(6)-Policy-Gradient-Saftmax

36734 ワード

Policy gradientの最大の利点は、出力されるこのactionが連続的な値であってもよく、前に述べたvalue-basedメソッドが出力する値はすべて不連続な値であり、次に、最大値のactionを選択します.policy gradientは連続分布でactionを選択できます.誤差逆伝達:この逆伝達の目的は、今回選択された行為が次回に発生する可能性を高めることです.しかし、この行為が選択される確率を増やすべきかどうかをどのように確定しますか.この時私たちの古い友达、rewardの賞罰はこの時に役に立つことができます.
"""
RL_brain for Policy-Gradient-Softmax
"""
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

np.random.seed(1)
tf.set_random_seed(1)

class PolicyGradient:
    def __init__(
        self,
        n_actions,
        n_features,
        learning_rate=0.01,
        reward_decay=0.95,
        output_graph=False,
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay

        self.ep_obs, self.ep_as, self.ep_rs = [], [], []

        self._build_net()

        self.sess = tf.Session()

        if output_graph:
            tf.summary.FileWriter("logs/", self.sess.graph)
        
        self.sess.run(tf.global_variables_initializer())
    
    def _build_net(self):
        with tf.name_scope('inputs'):
            self.tf_obs = tf.placeholder(tf.float32, [None, self.n_features], name="observations")
            self.tf_acts = tf.placeholder(tf.int32, [None, ], name="actions_num")
            self.tf_vt = tf.placeholder(tf.float32, [None, ], name="actions_value")

        # fc1
        layer = tf.layers.dense(
            inputs=self.tf_obs,
            units=10,
            activation=tf.nn.tanh,
            kernel_initializer=tf.random_normal_initializer(mean=0, stddev=0.3),
            bias_initializer=tf.constant_initializer(0.1),
            name='fc1'
        )
        # fc2
        all_act = tf.layers.dense(
            inputs=layer,
            units=self.n_actions,
            activation=None,
            kernel_initializer=tf.random_normal_initializer(mean=0,stddev=0.3),
            bias_initializer=tf.constant_initializer(0.1),
            name='fc2'
        )

        self.all_act_prob = tf.nn.softmax(all_act, name='act_prob')

        with tf.name_scope('loss'):
            # to maximize total reward (log_p * R) is to minimize - (log_p * R), and the tf only have minimize(loss)
            neg_log_prob = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=all_act, labels=self.tf_acts)
            # or in this way:
            # neg_log_prob = tf.reduce_sum(-tf.log(self.all_act_prob)*tf.one_hot(self.tf_acts, self.n_actions), axis=1)
            loss = tf.reduce_mean(neg_log_prob * self.tf_vt) # reward guided loss
        with tf.name_scope('train'):
            self.train_op = tf.train.AdamOptimizer(self.lr).minimize(loss)
    
    def choose_action(self, observation):
        prob_weights = self.sess.run(self.all_act_prob, feed_dict={self.tf_obs:observation[np.newaxis, :]})
        action = np.random.choice(range(prob_weights.shape[1]), p=prob_weights.ravel()) # select action w.r.t the actions prob
        return action
    
    def store_transition(self, s, a, r):
        self.ep_obs.append(s)
        self.ep_as.append(a)
        self.ep_rs.append(r)
    
    def learn(self):
        # discount and normalize episode reward
        discounted_ep_rs_norm = self._discount_and_norm_rewards()

        # train on episode
        self.sess.run(self.train_op, feed_dict={
            self.tf_obs: np.vstack(self.ep_obs), # shape=[None, n_obs]
            self.tf_acts: np.array(self.ep_as), # shape=[None, ]
            self.tf_vt: discounted_ep_rs_norm, # shape=[None, ]
        })

        self.ep_obs, self.ep_as, self.ep_rs = [], [], [] # empty episode data
        return discounted_ep_rs_norm
    
    def _discount_and_norm_rewards(self):
        """
              
        """
        # discount episode rewards
        discounted_ep_rs = np.zeros_like(self.ep_rs)
        running_add = 0
        for t in reversed(range(0, len(self.ep_rs))):
            running_add = running_add * self.gamma + self.ep_rs[t]
            discounted_ep_rs[t] = running_add
        
        # normalize episode rewards
        discounted_ep_rs -= np.mean(discounted_ep_rs)
        discounted_ep_rs /= np.std(discounted_ep_rs)
        return discounted_ep_rs
"""
test case 1.
"""
import gym
from RL_brain import PolicyGradient
import matplotlib.pyplot as plt

DISPLAY_REWARD_THRESHOLD = 400 # renders environment if total episode reward is greater than this threshold
RENDER = False # rendering wastes time
env = gym.make('CartPole-v0')
env.seed(1) # reproducible, general Policy gradient has high variance
env = env.unwrapped

print(env.action_space)
print(env.observation_space)
print(env.observation_space.high)
print(env.observation_space.low)

RL = PolicyGradient(
    n_actions=env.action_space.n,
    n_features=env.observation_space.shape[0],
    learning_rate=0.02,
    reward_decay=0.99,
    # output_graph=True,
)

for i_episode in range(3000):
    observation = env.reset()

    while True:
        if RENDER:env.render()

        action = RL.choose_action(observation)

        observation_, reward, done, info = env.step(action)

        RL.store_transition(observation, action, reward)

        if done:
            ep_rs_sum = sum(RL.ep_rs)

            if 'running_reward' not in globals():
                running_reward = ep_rs_sum
            
            else:
                running_reward = running_reward * 0.99 + ep_rs_sum * 0.01
            
            if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True # rendering
            print("episode:", i_episode, " reward:", int(running_reward))

            vt = RL.learn()
            
            if i_episode == 0:
                plt.plot(vt) # plot the episode vt
                plt.xlabel('episode steps')
                plt.ylabel('normalized state-action value')
                plt.show()
            break

        observation = observation_

"""
test case 2.
"""
import gym
from RL_brain import PolicyGradient
import matplotlib.pyplot as plt

DISPLAY_REWARD_THRESHOLD = -2000 # renders environment if total episode reward is greater than this threshold
# episode: 154 reward: -10667
# episode: 387 reward: -2009
# episode: 489 reward: -1006
# episode: 628 reward: -502

RENDER = False # rendering wastes time

env = gym.make('MountainCar-v0')
env.seed(1) # reproducible, general Policy gradient has high variance
env = env.unwrapped

print(env.action_space)
print(env.observation_space)
print(env.observation_space.high)
print(env.observation_space.low)

RL = PolicyGradient(
    n_actions = env.action_space.n,
    n_features = env.observation_space.shape[0],
    learning_rate=0.02,
    reward_decay=0.995,
    # output_graph = True,
)

for i_episode in range(1000):
    observation = env.reset()

    while True:
        if RENDER: env.render()

        action = RL.choose_action(observation)

        observation_, reward, done, info = env.step(action) # reward = -1 in all cases

        RL.store_transition(observation, action, reward)

        if done:
            # calculate running reward
            ep_rs_sum = sum(RL.ep_rs)
            if 'running_reward' not in globals():
                running_reward = ep_rs_sum
            else:
                running_reward = running_reward * 0.99 + ep_rs_sum * 0.01
            if running_reward > DISPLAY_REWARD_THRESHOLD: RENDER = True # rendering

            print("episode:", i_episode, " reward:", int(running_reward))

            vt = RL.learn() # train

            if i_episode == 30:
                plt.plot(vt) # plot the episode vt
                plt.xlabel('episode steps')
                plt.ylabel('normalized state-action value')
                plt.show()

            break
        observation = observation_