avroの使用詳細
7107 ワード
一、avroの紹介
1、要約
avroはデータの順序付けシステムであり、提供されている.豊富なデータ構造 高速圧縮可能なバイナリデータ形式 耐久データを格納するファイルコンテナ リモートプロセスは、RPC を呼び出します.簡単な動的言語結合機能 2、タイプ
二、avroのhadoopでの使用
1、モード確定
2、textデータを入力とします.
2.1プラグインの順序なし
2.2.1プラグインの導入
注意schemaファイルは指定されたファイルの中に置いて、ideaでこのファイルをコンパイルして、ディレクトリの中でクラスファイルを生成させます.
2.2.3一般使用
1、要約
avroはデータの順序付けシステムであり、提供されている.
二、avroのhadoopでの使用
1、モード確定
:{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}
その中のnamespaceはパッケージ名で、nameはクラス名です.2、textデータを入力とします.
2.1プラグインの順序なし
//
Schema schema = new Schema.Parser().parse(new File("user.avsc"));
GenericRecord user1 = new GenericData.Record(schema);
user1.put("name", "Alyssa");
user1.put("favorite_number", 256);
// Leave favorite color null
GenericRecord user2 = new GenericData.Record(schema);
user2.put("name", "Ben");
user2.put("favorite_number", 7);
user2.put("favorite_color", "red");
//
// Serialize user1, user2 and user3 to disk
DatumWriter userDatumWriter = new SpecificDatumWriter(User.class);
DataFileWriter dataFileWriter = new DataFileWriter(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();
//
// Deserialize Users from disk
DatumReader userDatumReader = new SpecificDatumReader(User.class);
DataFileReader dataFileReader = new DataFileReader(file, userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}
2.2プラグインの順序付けがあります.2.2.1プラグインの導入
org.apache.avro
avro-maven-plugin
1.8.2
generate-sources
schema
${project.basedir}/../
${project.basedir}/target/generated-sources/
2.2.2 schemaファイルをコンパイルする注意schemaファイルは指定されたファイルの中に置いて、ideaでこのファイルをコンパイルして、ディレクトリの中でクラスファイルを生成させます.
2.2.3一般使用
DatumWriter userDatumWriter = new SpecificDatumWriter(User.class);
DataFileWriter dataFileWriter = new DataFileWriter(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("users.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();
//
// Deserialize Users from disk
DatumReader userDatumReader = new SpecificDatumReader(User.class);
DataFileReader dataFileReader = new DataFileReader(file, userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}
3、例(プラグインがある方式を使う)MapReduceColorCount:
package example;
import java.io.IOException;
import org.apache.avro.Schema;
import org.apache.avro.mapred.AvroKey;
import org.apache.avro.mapred.AvroValue;
import org.apache.avro.mapreduce.AvroJob;
import org.apache.avro.mapreduce.AvroKeyInputFormat;
import org.apache.avro.mapreduce.AvroKeyValueOutputFormat;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import example.avro.User;
public class MapReduceColorCount extends Configured implements Tool {
public static class ColorCountMapper extends
Mapper, NullWritable, Text, IntWritable> {
@Override
public void map(AvroKey key, NullWritable value, Context context)
throws IOException, InterruptedException {
CharSequence color = key.datum().getFavoriteColor();
if (color == null) {
color = "none";
}
context.write(new Text(color.toString()), new IntWritable(1));
}
}
public static class ColorCountReducer extends
Reducer, AvroValue> {
@Override
public void reduce(Text key, Iterable values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
context.write(new AvroKey(key.toString()), new AvroValue(sum));
}
}
public int run(String[] args) throws Exception {
if (args.length != 2) {
System.err.println("Usage: MapReduceColorCount
注意:プラグインを使わない方式を採用した場合、mapのコードは@Override public void map(AvroKey key、Null Writable value、Contect context)throws IOException、InterrupteException{}コードはAvroKeyのschemaを知らないので、maをmaで指定します.