深いC++関数マッピングの使用詳細

5698 ワード

この2つの方法は符号化の面では簡単に少ないですが、分岐が一定数に達したら、特に分岐内部に大きなコードが嵌められたり、また嵌められたりします。コードは非常に肥大しています。if else if文の多すぎる分岐に対して、判定文が多すぎて、効率に影響を与えます。
3つの代替方法は簡単に説明します。1.mapを使用すると、ツリーとノードの構築が必要であり、配列の方式よりも多くのメモリを消費し、クエリ時間の複雑さはLog(N)であるが、拡張しやすいです。
2.配列を使って、直接索引の位置付けを調べます。一般的に、私達は連続的な初期化配列で、つまりインデックス(type_)を意味します。関数へのマッピングは連続しているので、配列インデックスを使って拡張すると、例えば、添削要素はやや面倒です。
3.C++の特性---抽象的な継承を使って実現し、本文では前の2種類の使用だけを述べ、この方式は後で補充する。

//
enum type_func
{
 type_begin = -1,
 type_eat,
 type_sleep,
 type_walk,
 type_run,
 type_smile,
 type_cry,
 type_jump,
 type_max_size,
};
class CAnimal
{
public:
 typedef int (CAnimal::*ptr_func)(bool);
protected:
 static map<type_func,ptr_func> s_map;     
 static ptr_func     s_array[type_max_size];   
public:
 CAnimal()
 {
  memset(s_array,0,sizeof(s_array));
  Init(); 
 }
 //
 int  eat  (bool= true)  { return printf("eatn") ,1; }
 int  sleep (bool= true)  { return printf("sleepn"),1; }
 int  walk (bool= true)  { return printf("walkn") ,1; }
 int  run  (bool= true)  { return printf("runn") ,1; }
 int  smile (bool= true)  { return printf("smilen"),1; }
 int  cry  (bool= true)  { return printf("cryn") ,1; }
 int  jump (bool= true)  { return printf("jumpn") ,1; }
 //
 void Init ()
 {
  s_map[type_eat]  = &CAnimal::eat;
  s_map[type_sleep] = &CAnimal::sleep;
  s_map[type_walk] = &CAnimal::walk;
  s_map[type_run]  = &CAnimal::run;
  s_map[type_smile] = &CAnimal::smile;
  s_map[type_cry]  = &CAnimal::cry;
  s_map[type_jump] = &CAnimal::jump;
  s_array[type_eat] = &CAnimal::eat;
  s_array[type_sleep] = &CAnimal::sleep;
  s_array[type_walk] = &CAnimal::walk;
  s_array[type_run] = &CAnimal::run;
  s_array[type_smile] = &CAnimal::smile;
  s_array[type_cry] = &CAnimal::cry;
  s_array[type_jump] = &CAnimal::jump;
 }
 // switc case if else... 
 // ,
 // , 。
 void Process (type_func type)
 {
  switch (type)
  {
  case type_eat:  eat();  break;
  case type_sleep: sleep(); break;
  case type_walk:  walk();  break;
  case type_run:  run();  break;
  case type_smile: smile(); break;
  case type_cry:  cry();  break;
  case type_jump:  jump();  break;
  }
 }
 // ! :)
 void Process2(type_func type)
 {
  if (type_eat == type)
  {
   eat();
  }
  else if (type_sleep == type)
  {
   sleep();
  }
  else if (type_walk == type)
  {
   walk();
  }
  else if (type_run == type)
  {
   run();
  }
  else if (type_smile == type)
  {
   smile();
  }
  else if (type_cry == type)
  {
   cry();
  }
  else if (type_jump == type)
  {
   jump();
  }
 }
 // map
 void ProcessByUseMap(int key, bool val)
 {
  map<type_func,ptr_func>::iterator it =  s_map.find((type_func)key);
  if (it != s_map.end())
  {
   ptr_func pFun = it->second;
   if (pFun) 
    (this->*pFun)(val);
  }
 }
 //
 void ProcessByUseArray(int key, bool val)
 {
  //
  if (type_begin < key && type_max_size > key)
  {
   ptr_func pFun = s_array[key];
   if (pFun) 
    (this->*pFun)(val);
  }
 }
 // map
 int operator[] (int key)
 {
  map<type_func,ptr_func>::iterator it =  s_map.find((type_func)key);
  if (it != s_map.end())
  {
   ptr_func pFun = it->second;
   if (pFun)  return (this->*pFun)(false);
  }
  return NULL;
 }
 //
 int operator() (int key,bool val)
 {
  if (type_begin < key && type_max_size > key)
  {
   ptr_func pFun = s_array[key];
   if (pFun)  return (this->*pFun)(val);
  }
  return NULL;
 }
};
map<type_func, CAnimal::ptr_func> CAnimal::s_map;     
CAnimal::ptr_func     CAnimal::s_array[type_max_size];
//////////////////////////////////////////////////////////////////////////
//
void func_eat(int = 0) { }
void func_run(int = 0) { }
void func_walk(int =0) { }
void func_cry(int = 0) { }
typedef void (*ptrFun)(int);
map<type_func,ptrFun> g_map;
ptrFun     g_array[type_max_size];
int _tmain(int argc, _TCHAR* argv[])
{
 //////////////////////////////////////////////////////////////////////////
 // ,
 // 2
 // init
 g_map[type_eat] = func_eat;
 g_map[type_run] = func_run;
 g_map[type_walk] = func_walk;
 g_map[type_cry] = func_cry;
 g_array[type_eat] = func_eat;
 g_array[type_run] = func_run;
 g_array[type_walk] = func_walk;
 g_array[type_cry] = func_cry;
 // using
 g_map[type_eat](1);
 g_map[type_run](2);
 g_map[type_walk](3);
 g_map[type_cry](4);
 g_array[type_eat](1);
 g_array[type_run](2);
 g_array[type_walk](3);
 g_array[type_cry](4);
 //////////////////////////////////////////////////////////////////////////
 //
 CAnimal Dog;
 Dog.Process(type_eat);
 Dog.ProcessByUseMap(type_run,true);
 Dog.ProcessByUseArray(type_cry,false);
 Dog[type_walk];
 Dog(type_sleep,true);
 Dog(type_run,false);
 return 1;
}