Ubuntu14.04 LTS にGTX1080 をセットアップ(2016年11月版)
2016年11月版CUDAセットアップ
0.マシンスペック
- CPU : i5-6600
- MB : H170 Pro (ASUS)
- RAM : DDR4 PC4-17000 8GB * 2 (Corsair)
- VGA : GTX 1080 (MSI)
- HDD : 1TB
- PSU : 650W (Corsair)
- OS : Ubuntu14.04 LTS
OSは以下よりダウンロード
https://www.ubuntulinux.jp/News/ubuntu1404-ja-remix
OSのインストールは以下の記事の手順2から先を参考に
http://qiita.com/salty-vanilla/items/a1cddd365b4c106fd446
1. Nvidia ドライバのインストール
sudo add-apt-repository ppa:xorg-edgers/ppa
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt-get update
sudo apt-cache search 'nvidia-[0-9]+$'
以下のように表示される
nvidia-173 - NVIDIA legacy binary driver - version 173.14.39
nvidia-310 - Transitional package for nvidia-310
nvidia-319 - Transitional package for nvidia-319
nvidia-331 - Transitional package for nvidia-331
nvidia-346 - Transitional package for nvidia-346
nvidia-304 - NVIDIA legacy binary driver - version 304.132
nvidia-340 - NVIDIA binary driver - version 340.98
nvidia-352 - NVIDIA binary driver - version 352.79
nvidia-355 - NVIDIA binary driver - version 355.11
nvidia-358 - NVIDIA binary driver - version 358.16
nvidia-361 - NVIDIA binary driver - version 361.45.18
nvidia-364 - NVIDIA binary driver - version 364.19
nvidia-367 - NVIDIA binary driver - version 367.57
nvidia-370 - NVIDIA binary driver - version 370.28
370.28をインストール
sudo apt-get install nvidia-370
sudo apt-get install mesa-common-dev
sudo apt-get install freeglut3-dev
2. CUDA TOOLKITのインストール
https://developer.nvidia.com/cuda-toolkit から
CUDA Toolkit 8.0をダウンロード
インストールする
cd ~/Downloads
sudo sh cuda_8.0.44_linux.run
長い文章が出てきたら、Qキーを押して、以下のように進めていく
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 367.48?
(y)es/(n)o/(q)uit: n
Install the CUDA 8.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-8.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 8.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /home/gpu6 ]:
Installing the CUDA Toolkit in /usr/local/cuda-8.0 ...
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Installing the CUDA Samples in /home/gpu6 ...
Copying samples to /home/gpu6/NVIDIA_CUDA-8.0_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Not Selected
Toolkit: Installed in /usr/local/cuda-8.0
Samples: Installed in /home/gpu6, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-8.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.
***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
sudo <CudaInstaller>.run -silent -driver
Logfile is /tmp/cuda_install_16037.log
パスを通す
echo export PATH=/usr/local/cuda/bin${PATH:+:${PATH}} >> ~/.bashrc
echo export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} >> ~/.bashrc
echo export CUDA_HOME=/usr/local/cuda >> ~/.bashrc
g++のインストール
sudo apt-get install g++
一回リブートして、CUDA_TOOL_KITの動作確認
cd ~/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuery
make
./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GTX 1080"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 6.1
Total amount of global memory: 8110 MBytes (8504279040 bytes)
(20) Multiprocessors, (128) CUDA Cores/MP: 2560 CUDA Cores
GPU Max Clock rate: 1823 MHz (1.82 GHz)
Memory Clock rate: 5005 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 2097152 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 4 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1080
Result = PASS
3. cuDNNのインストール
https://developer.nvidia.com/rdp/form/cudnn-download-survey
からアンケートに答えて、cuDNNをダウンロード
Download cuDNN v5.1 (August 10, 2016), for CUDA 8.0
┠ cuDNN v5.1 Library for Linux
cd ~/Downloads
tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/lib64/libcudnn*
以上で、CUDAのセットアップは完了です。
Author And Source
この問題について(Ubuntu14.04 LTS にGTX1080 をセットアップ(2016年11月版)), 我々は、より多くの情報をここで見つけました https://qiita.com/salty-vanilla/items/467f1ef15363fd6d0181著者帰属:元の著者の情報は、元のURLに含まれています。著作権は原作者に属する。
Content is automatically searched and collected through network algorithms . If there is a violation . Please contact us . We will adjust (correct author information ,or delete content ) as soon as possible .