deeplearningを試す(caffe deepdream)
deepdreamを動かすところまでを記載します
CUDA7.0インストール
open cvなどをインストール
$ brew install --fresh -vd snappy leveldb gflags glog szip lmdb
$ brew tap homebrew/science
$ brew install hdf5 opencv
$ brew install --build-from-source --with-python --fresh -vd protobuf
$ brew install --build-from-source --fresh -vd boost boost-python
$ brew install openblas
pythonのインストール
今回はpyenvにanacondaを入れます
(anacondaを推奨しているみたい)
$ brew install pyenv
$ pyenv install anaconda-2.1.0
$ pyenv local anaconda-2.1.0
$ pyenv global anaconda-2.1.0
caffeをクローン
$ cd ~/
$ git clone https://github.com/BVLC/caffe.git
Makefile.configのコピー
$ cd caffe
$ pip install -r python/requirements.txt
$ cp Makefile.config.example Makefile.config
Makefile.configの編集
以下の変数のコメントアウトを外して修正してください
各パスは環境に合わせて書き換えてください
BLAS := open
BLAS_INCLUDE := /usr/local/Cellar/openblas/0.2.15/include
BLAS_LIB := /usr/local/Cellar/openblas/0.2.15/lib
ANACONDA_HOME := /Users/username/.pyenv/versions/anaconda-2.1.0
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
$(ANACONDA_HOME)/include/python2.7 \
$(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \
# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := $(ANACONDA_HOME)/lib
モデルのダウンロード
以下のリンクからダウンロードして、~/caffe/models/bvlc_googlenet/ に保存
bvlc_googlenet.caffemodel
.bashrcにパスを追加
export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:~/.pyenv/versions/anaconda-2.1.0/lib
export PYTHONPATH=~/caffe/python/:$PYTHONPATH
source ~/.bashrc で反映
コンパイル
$ make clean
$ make all -j4
$ make test
$ make runtest
$ make pycaffe
以下のコマンドでエラーが出なければ、caffeのインストールは成功
$ python
>>> import caffe
ipython notebookのインストール
(deepdreamのソースコードはipython notebook形式になっている)
$ pip install "ipython[notebook]"
deepdreamのクローン
$ git clone [email protected]:google/deepdream.git
ipython notebookを実行
$ cd deepdream
$ ipython trust dream.ipynb
$ ipython notebook
うまくいくと、ブラウザ上でnotebookがたちあがるので、dream.ipynbを選択して立ち上がった画面から再生ボタンを押して、ソースコードごとに挙動を確認できます。
進めていくと、frames/配下に生成された画像が保存されます。
なお、pythonで実行する場合は以下のソースで実行できます
from cStringIO import StringIO
import numpy as np
import scipy.ndimage as nd
import PIL.Image
from IPython.display import clear_output, Image, display
from google.protobuf import text_format
import caffe
def showarray(a, fmt='jpeg'):
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))
model_path = '../caffe/models/bvlc_googlenet/' # substitute your path here
net_fn = model_path + 'deploy.prototxt'
param_fn = model_path + 'bvlc_googlenet.caffemodel'
# Patching model to be able to compute gradients.
# Note that you can also manually add "force_backward: true" line to "deploy.prototxt".
model = caffe.io.caffe_pb2.NetParameter()
text_format.Merge(open(net_fn).read(), model)
model.force_backward = True
open('tmp.prototxt', 'w').write(str(model))
net = caffe.Classifier('tmp.prototxt', param_fn,
mean = np.float32([104.0, 116.0, 122.0]), # ImageNet mean, training set dependent
channel_swap = (2,1,0)) # the reference model has channels in BGR order instead of RGB
# a couple of utility functions for converting to and from Caffe's input image layout
def preprocess(net, img):
return np.float32(np.rollaxis(img, 2)[::-1]) - net.transformer.mean['data']
def deprocess(net, img):
return np.dstack((img + net.transformer.mean['data'])[::-1])
def objective_L2(dst):
dst.diff[:] = dst.data
def make_step(net, step_size=1.5, end='inception_4c/output',
jitter=32, clip=True, objective=objective_L2):
'''Basic gradient ascent step.'''
src = net.blobs['data'] # input image is stored in Net's 'data' blob
dst = net.blobs[end]
ox, oy = np.random.randint(-jitter, jitter+1, 2)
src.data[0] = np.roll(np.roll(src.data[0], ox, -1), oy, -2) # apply jitter shift
net.forward(end=end)
objective(dst) # specify the optimization objective
net.backward(start=end)
g = src.diff[0]
# apply normalized ascent step to the input image
src.data[:] += step_size/np.abs(g).mean() * g
src.data[0] = np.roll(np.roll(src.data[0], -ox, -1), -oy, -2) # unshift image
if clip:
bias = net.transformer.mean['data']
src.data[:] = np.clip(src.data, -bias, 255-bias)
def deepdream(net, base_img, iter_n=10, octave_n=4, octave_scale=1.4,
end='inception_4c/output', clip=True, **step_params):
# prepare base images for all octaves
octaves = [preprocess(net, base_img)]
for i in xrange(octave_n-1):
octaves.append(nd.zoom(octaves[-1], (1, 1.0/octave_scale,1.0/octave_scale), order=1))
src = net.blobs['data']
detail = np.zeros_like(octaves[-1]) # allocate image for network-produced details
for octave, octave_base in enumerate(octaves[::-1]):
h, w = octave_base.shape[-2:]
if octave > 0:
# upscale details from the previous octave
h1, w1 = detail.shape[-2:]
detail = nd.zoom(detail, (1, 1.0*h/h1,1.0*w/w1), order=1)
src.reshape(1,3,h,w) # resize the network's input image size
src.data[0] = octave_base+detail
for i in xrange(iter_n):
make_step(net, end=end, clip=clip, **step_params)
# visualization
vis = deprocess(net, src.data[0])
if not clip: # adjust image contrast if clipping is disabled
vis = vis*(255.0/np.percentile(vis, 99.98))
showarray(vis)
print octave, i, end, vis.shape
clear_output(wait=True)
# extract details produced on the current octave
detail = src.data[0]-octave_base
# returning the resulting image
return deprocess(net, src.data[0])
img = np.float32(PIL.Image.open('sky1024px.jpg'))
for i in xrange(100):
img = deepdream(net, img, end='inception_4e/pool') PIL.Image.fromarray(np.uint8(img)).save("frames/result-%03d.png" % i)
finetune_flickr_styleを使うと、floating point exceptionでエラーになるので要調査
Author And Source
この問題について(deeplearningを試す(caffe deepdream)), 我々は、より多くの情報をここで見つけました https://qiita.com/suisuina/items/915d330ed215d018e099著者帰属:元の著者の情報は、元のURLに含まれています。著作権は原作者に属する。
Content is automatically searched and collected through network algorithms . If there is a violation . Please contact us . We will adjust (correct author information ,or delete content ) as soon as possible .