DataCastle[猫と犬の大戦]——Yinjh試合のすべてのコード
14894 ワード
DataCastle猫犬大戦の参加者は訓練セットからモデルを構築してテストセットの子犬を識別する必要がある.誰が一番多くの数を認識できるか、誰の成績がもっといいです.
参加者は、ファイルタイプ、例えばxabcdを含まない子犬の画像と認識された画像名を提出する必要があります.jpgでは、コミットされたuidはxabcdです.詳細はサンプルを参照してファイルをコミットします.
DataCastleで原文を表示する
参加者は、ファイルタイプ、例えばxabcdを含まない子犬の画像と認識された画像名を提出する必要があります.jpgでは、コミットされたuidはxabcdです.詳細はサンプルを参照してファイルをコミットします.
import os
import glob
from keras.models import Sequential
from keras.layers.core import Flatten, Dense, Dropout
from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
from keras.optimizers import SGD
import cv2, numpy as np
def VGG_16(weights_path=None):
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))
if weights_path:
model.load_weights(weights_path)
return model
if __name__ == "__main__":
# Test pretrained model
model = VGG_16('vgg16_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
dogs=[251, 268, 256, 253, 255, 254, 257, 159, 211, 210, 212, 214, 213, 216, 215, 219, 220, 221, 217, 218, 207, 209, 206, 205, 208, 193, 202, 194, 191, 204, 187, 203, 185, 192, 183, 199, 195, 181, 184, 201, 186, 200, 182, 188, 189, 190, 197, 196, 198, 179, 180, 177, 178, 175, 163, 174, 176, 160, 162, 161, 164, 168, 173, 170, 169, 165, 166, 167, 172, 171, 264, 263, 266, 265, 267, 262, 246, 242, 243, 248, 247, 229, 233, 234, 228, 231, 232, 230, 227, 226, 235, 225, 224, 223, 222, 236, 252, 237, 250, 249, 241, 239, 238, 240, 244, 245, 259, 261, 260, 258, 154, 153, 158, 152, 155, 151, 157, 156]
cats=[281,282,283,284,285,286,287]
path = os.path.join('imgs', 'test', '*.jpg')
files = glob.glob(path)
result=[]
for fl in files:
flbase = os.path.basename(fl)
im = cv2.resize(cv2.imread(fl), (224, 224)).astype(np.float32)
im[:,:,0] -= 103.939
im[:,:,1] -= 116.779
im[:,:,2] -= 123.68
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
out = model.predict(im)
p = np.sum(out[0,dogs]) / (np.sum(out[0,dogs]) + np.sum(out[0,cats]))
result.append((flbase,p))
result=sorted(result, key=lambda x:x[1], reverse=True)
for x in result:
#print x[0],x[1]
print x[0]
DataCastleで原文を表示する