Inception-v 3既成重みによる特徴抽出(画像認識)
8981 ワード
tensorflow公式サイトの画像認識の中国語紹介では、Tensorflowのモデルコードライブラリのclassify_image.pyで画像認識を行います.どのようにテストするか、そして最後の層の1*1*2048次元の特徴抽出方法も紹介されているので、ここで紹介します.
ソースコードはここで紹介したもので、3つのインタフェースがあり、
'softmax:0': A tensor containing the normalized prediction across 1000 labels.
'pool_3:0': A tensor containing the next-to-last layer containing 2048 float description of the image.
'DecodeJpeg/contents:0': A tensor containing a string providing JPEG encoding of the image.
予測すると直接'softmax:0':'DecodeJpeg/contents:0':画像認識のテストが可能
フィーチャーを抽出するには
はい、保存するならCSVか選択できます.matファイル
兄弟子は自分のデータセットの画像の特徴を抽出する必要があるので、このように書きました.もう一つのサイクルを加えて、データセット全体を遍歴することもできます.コンピュータの配置が限られているので、このように書きました.私が変更したソース+重み
新しい変更
ベクトルをまっすぐにしてデータセット全体を巡回
......
with tf.Session() as sess:
# Some useful tensors:
# 'softmax:0': A tensor containing the normalized prediction across
# 1000 labels.
# 'pool_3:0': A tensor containing the next-to-last layer containing 2048
# float description of the image.
# 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG
# encoding of the image.
# Runs the softmax tensor by feeding the image_data as input to the graph.
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
.......
ソースコードはここで紹介したもので、3つのインタフェースがあり、
'softmax:0': A tensor containing the normalized prediction across 1000 labels.
'pool_3:0': A tensor containing the next-to-last layer containing 2048 float description of the image.
'DecodeJpeg/contents:0': A tensor containing a string providing JPEG encoding of the image.
予測すると直接'softmax:0':'DecodeJpeg/contents:0':画像認識のテストが可能
フィーチャーを抽出するには
fc_tensor = sess.graph.get_tensor_by_name('pool_3:0')
pool_1 = sess.run(fc_tensor,{'DecodeJpeg/contents:0': image_data})
はい、保存するならCSVか選択できます.matファイル
import tensorflow as tf
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import scipy.io as scio
model_dir='F:/fqh/models-master/tutorials/image/imagenet/2015'
image = 'F:/fqh/models-master/tutorials/image/imagenet/data_set/face/faces95_72_20_180-200jpgfar-close/'
target_path=image+'wjhugh/'
class NodeLookup(object):
def __init__(self, label_lookup_path=None, uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
for line in proto_as_ascii_lines:
line = line.strip('
')
parse_items = line.split('\t')
uid = parse_items[0]
human_string = parse_items[1]
uid_to_human[uid] = human_string
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
node_id_to_uid = {}
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
with tf.gfile.FastGFile(os.path.join(
model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
create_graph()
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
for root, dirs, files in os.walk(target_path):
for file in files:
# print(file)
img_path = target_path+file
image_data = tf.gfile.FastGFile(img_path, 'rb').read()
fc_tensor = sess.graph.get_tensor_by_name('pool_3:0')
pool_1 = sess.run(fc_tensor,{'DecodeJpeg/contents:0': image_data})
# print(pool_1)
img_path=img_path[:len(img_path)-4]
#print(img_path)
scio.savemat(img_path+'.mat', {"pool_1": pool_1})
兄弟子は自分のデータセットの画像の特徴を抽出する必要があるので、このように書きました.もう一つのサイクルを加えて、データセット全体を遍歴することもできます.コンピュータの配置が限られているので、このように書きました.私が変更したソース+重み
新しい変更
import tensorflow as tf
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
import scipy.io as scio
model_dir='F:/fqh/models-master/tutorials/image/imagenet/2015'
image = 'F:/fqh/models-master/tutorials/image/imagenet/data_set/face/faces96_152_20_180-200jpgview-depth/'
target_path=image+'wjhugh/'
class NodeLookup(object):
def __init__(self, label_lookup_path=None, uid_lookup_path=None):
if not label_lookup_path:
label_lookup_path = os.path.join(
model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
if not uid_lookup_path:
uid_lookup_path = os.path.join(
model_dir, 'imagenet_synset_to_human_label_map.txt')
self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
def load(self, label_lookup_path, uid_lookup_path):
if not tf.gfile.Exists(uid_lookup_path):
tf.logging.fatal('File does not exist %s', uid_lookup_path)
if not tf.gfile.Exists(label_lookup_path):
tf.logging.fatal('File does not exist %s', label_lookup_path)
proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
uid_to_human = {}
for line in proto_as_ascii_lines:
line = line.strip('
')
parse_items = line.split('\t')
uid = parse_items[0]
human_string = parse_items[1]
uid_to_human[uid] = human_string
proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
node_id_to_uid = {}
for line in proto_as_ascii:
if line.startswith(' target_class:'):
target_class = int(line.split(': ')[1])
if line.startswith(' target_class_string:'):
target_class_string = line.split(': ')[1]
node_id_to_uid[target_class] = target_class_string[1:-2]
node_id_to_name = {}
for key, val in node_id_to_uid.items():
if val not in uid_to_human:
tf.logging.fatal('Failed to locate: %s', val)
name = uid_to_human[val]
node_id_to_name[key] = name
return node_id_to_name
def id_to_string(self, node_id):
if node_id not in self.node_lookup:
return ''
return self.node_lookup[node_id]
def create_graph():
with tf.gfile.FastGFile(os.path.join(
model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
create_graph()
list0=[]
for root, dirs,files in os.walk(image):
list0.append(dirs)
#print(list0[0])
img_list=[]
# print(img_list)
for ii in list0[0]:
img_list.append(ii)
list_img_name=np.array(img_list)
list_img_name.sort()
# print(list_img_name[0])
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
for jj in range(0,len(list_img_name)):#len(list_img_name)
target_path=image+list_img_name[jj]+'/'
for root, dirs, files in os.walk(target_path):
for file in files:
img_path = target_path+file
image_data = tf.gfile.FastGFile(img_path, 'rb').read()
fc_tensor = sess.graph.get_tensor_by_name('pool_3:0')
pool_1 = sess.run(fc_tensor,{'DecodeJpeg/contents:0': image_data})
pool_2 = pool_1[0,0,0,:]
img_path=img_path[:len(img_path)-4]
scio.savemat(img_path+'.mat', {"pool_2": pool_2})
pi= (jj/(len(list_img_name)-1))*100
print("%4.2f %%" % pi)
ベクトルをまっすぐにしてデータセット全体を巡回