ターゲット検出:選択的検索(selective search)
2078 ワード
selective searchメソッドで候補ボックスを抽出する最も簡単な方法
1、以下のgithub接続に従って関連ファイルをダウンロードし、相応のパッケージをインストールする
https://github.com/AlpacaDB/selectivesearch
端末の下で実行:
2、exampleファイルでスクリプトexampleを実行する.py、その中の画像は持参したテスト画像です
3、exampleを修正する.py,自分の画像を読み込んでテストする
1、以下のgithub接続に従って関連ファイルをダウンロードし、相応のパッケージをインストールする
https://github.com/AlpacaDB/selectivesearch
端末の下で実行:
pip install selectivesearch
2、exampleファイルでスクリプトexampleを実行する.py、その中の画像は持参したテスト画像です
3、exampleを修正する.py,自分の画像を読み込んでテストする
# -*- coding: utf-8 -*-
from __future__ import (
division,
print_function,
)
import skimage.data
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import selectivesearch
from skimage import io ##
def main():
# loading astronaut image
#img = skimage.data.astronaut() #
img = io.imread('/home/qf/git/myfile2/selectivesearch-develop/example/test_00042.jpg')
# perform selective search
img_lbl, regions = selectivesearch.selective_search(
img, scale=500, sigma=0.9, min_size=10)
candidates = set()
for r in regions:
# excluding same rectangle (with different segments)
if r['rect'] in candidates: #
continue
# excluding regions smaller than 2000 pixels
if r['size'] < 20000: #
continue
# distorted rects
x, y, w, h = r['rect']
if w / h < 0.25 or h / w < 0.25: # 1/4
continue
candidates.add(r['rect'])
# draw rectangles on the original image
fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(6, 6))
ax.imshow(img)
###############################################
#print(candidates)
with open("box.txt","w") as f:# !
for x, y, w, h in candidates:
f.writelines([str(x),' ',str(y),' ',str(x+w),' ',str(y+h),'
'])
###############################################
for x, y, w, h in candidates:
print(x, y, w, h)
rect = mpatches.Rectangle(
(x, y), w, h, fill=False, edgecolor='red', linewidth=1)
ax.add_patch(rect)
plt.show()
if __name__ == "__main__":
main()