kerasロードモデル
1710 ワード
説明:このプログラムは2つの非表示層を含むニューラルネットワークです.保存したモデルをロードする方法を示します.データセット:MNIST
変数初期化 準備データ モデル を構築訓練と評価 モデル評価
1.kerasモジュールのロード
from __future__ import print_function
#Python __future__ , , 。
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense,Dropout,Activation
from keras.optimizers import SGD,Adam,RMSprop
from keras.utils import np_utils
load_model
from keras.models import load_model
batch_size = 128
nb_classes = 10
nb_epoch = 20
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
#
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
#
model=load_model('mnist-mpl.h5')
#
model.summary()
#
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])