PyTorchでMNIST手書き認識を実現

25917 ワード

じっけんかんきょう

  • win10 + anaconda + jupyter notebook
  • Pytorch1.1.0
  • Python3.7
  • gpu環境(オプション)
  • MNISTデータセットの紹介


    MNISTは6万枚の28 x 28の訓練サンプル、1万枚のテストサンプルを含み、CVの「Hello Word」と言える.本論文で使用したCNNネットワークはMNISTデータの識別率を99%に向上させた.次は実戦を始めます.

    パッケージのインポート

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    from torchvision import datasets, transforms
    torch.__version__
    

    スーパーパラメータの定義

    BATCH_SIZE=512
    EPOCHS=20 
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
    

    データセット


    PyTorchに付属しているdatasetを直接使用し、DataLoaderを使用してトレーニングデータとテストデータをそれぞれ読み取ります.データセットをダウンロードした場合はFalseを選択できます
    train_loader = torch.utils.data.DataLoader(
            datasets.MNIST('data', train=True, download=True, 
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=BATCH_SIZE, shuffle=True)
    
    test_loader = torch.utils.data.DataLoader(
            datasets.MNIST('data', train=False, transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=BATCH_SIZE, shuffle=True)
    

    ネットワークの定義


    このネットワークは、2つのボリューム層と2つの線形層を含み、最後に10次元、すなわち0〜9 10個の数字を出力する.
    class ConvNet(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv1=nn.Conv2d(1,10,5) # input:(1,28,28) output:(10,24,24) 
            self.conv2=nn.Conv2d(10,20,3) # input:(10,12,12) output:(20,10,10)
            self.fc1 = nn.Linear(20*10*10,500)
            self.fc2 = nn.Linear(500,10)
        def forward(self,x):
            in_size = x.size(0)
            out = self.conv1(x)
            out = F.relu(out)
            out = F.max_pool2d(out, 2, 2)  
            out = self.conv2(out)
            out = F.relu(out)
            out = out.view(in_size,-1)
            out = self.fc1(out)
            out = F.relu(out)
            out = self.fc2(out)
            out = F.log_softmax(out,dim=1)
            return out
    

    インスタンス化されたネットワーク

    model = ConvNet().to(DEVICE) #  gpu 
    optimizer = optim.Adam(model.parameters()) #  Adam 
    

    トレーニング関数の定義

    def train(model, device, train_loader, optimizer, epoch):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            loss.backward()
            optimizer.step()
            if(batch_idx+1)%30 == 0: 
                print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader), loss.item()))
    

    テスト関数の定義

    def test(model, device, test_loader):
        model.eval()
        test_loss = 0
        correct = 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += F.nll_loss(output, target, reduction='sum').item() #  
                pred = output.max(1, keepdim=True)[1] #  
                correct += pred.eq(target.view_as(pred)).sum().item()
    
        test_loss /= len(test_loader.dataset)
        print('
    Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)
    '
    .format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))

    訓練を始める

    for epoch in range(1, EPOCHS + 1):
        train(model, DEVICE, train_loader, optimizer, epoch)
        test(model, DEVICE, test_loader)
    

    じっけんけっか

    Train Epoch: 1 [14848/60000 (25%)]	Loss: 0.375058
    Train Epoch: 1 [30208/60000 (50%)]	Loss: 0.255248
    Train Epoch: 1 [45568/60000 (75%)]	Loss: 0.128060
    
    Test set: Average loss: 0.0992, Accuracy: 9690/10000 (97%)
    
    Train Epoch: 2 [14848/60000 (25%)]	Loss: 0.093066
    Train Epoch: 2 [30208/60000 (50%)]	Loss: 0.087888
    Train Epoch: 2 [45568/60000 (75%)]	Loss: 0.068078
    
    Test set: Average loss: 0.0599, Accuracy: 9816/10000 (98%)
    
    Train Epoch: 3 [14848/60000 (25%)]	Loss: 0.043926
    Train Epoch: 3 [30208/60000 (50%)]	Loss: 0.037321
    Train Epoch: 3 [45568/60000 (75%)]	Loss: 0.068404
    
    Test set: Average loss: 0.0416, Accuracy: 9859/10000 (99%)
    
    Train Epoch: 4 [14848/60000 (25%)]	Loss: 0.031654
    Train Epoch: 4 [30208/60000 (50%)]	Loss: 0.041341
    Train Epoch: 4 [45568/60000 (75%)]	Loss: 0.036493
    
    Test set: Average loss: 0.0361, Accuracy: 9873/10000 (99%)
    
    Train Epoch: 5 [14848/60000 (25%)]	Loss: 0.027688
    Train Epoch: 5 [30208/60000 (50%)]	Loss: 0.019488
    Train Epoch: 5 [45568/60000 (75%)]	Loss: 0.018023
    
    Test set: Average loss: 0.0344, Accuracy: 9875/10000 (99%)
    
    Train Epoch: 6 [14848/60000 (25%)]	Loss: 0.024212
    Train Epoch: 6 [30208/60000 (50%)]	Loss: 0.018689
    Train Epoch: 6 [45568/60000 (75%)]	Loss: 0.040412
    
    Test set: Average loss: 0.0350, Accuracy: 9879/10000 (99%)
    
    Train Epoch: 7 [14848/60000 (25%)]	Loss: 0.030426
    Train Epoch: 7 [30208/60000 (50%)]	Loss: 0.026939
    Train Epoch: 7 [45568/60000 (75%)]	Loss: 0.010722
    
    Test set: Average loss: 0.0287, Accuracy: 9892/10000 (99%)
    
    Train Epoch: 8 [14848/60000 (25%)]	Loss: 0.021109
    Train Epoch: 8 [30208/60000 (50%)]	Loss: 0.034845
    Train Epoch: 8 [45568/60000 (75%)]	Loss: 0.011223
    
    Test set: Average loss: 0.0299, Accuracy: 9904/10000 (99%)
    
    Train Epoch: 9 [14848/60000 (25%)]	Loss: 0.011391
    Train Epoch: 9 [30208/60000 (50%)]	Loss: 0.008091
    Train Epoch: 9 [45568/60000 (75%)]	Loss: 0.039870
    
    Test set: Average loss: 0.0341, Accuracy: 9890/10000 (99%)
    
    Train Epoch: 10 [14848/60000 (25%)]	Loss: 0.026813
    Train Epoch: 10 [30208/60000 (50%)]	Loss: 0.011159
    Train Epoch: 10 [45568/60000 (75%)]	Loss: 0.024884
    
    Test set: Average loss: 0.0286, Accuracy: 9901/10000 (99%)
    
    Train Epoch: 11 [14848/60000 (25%)]	Loss: 0.006420
    Train Epoch: 11 [30208/60000 (50%)]	Loss: 0.003641
    Train Epoch: 11 [45568/60000 (75%)]	Loss: 0.003402
    
    Test set: Average loss: 0.0377, Accuracy: 9894/10000 (99%)
    
    Train Epoch: 12 [14848/60000 (25%)]	Loss: 0.006866
    Train Epoch: 12 [30208/60000 (50%)]	Loss: 0.012617
    Train Epoch: 12 [45568/60000 (75%)]	Loss: 0.008548
    
    Test set: Average loss: 0.0311, Accuracy: 9908/10000 (99%)
    
    Train Epoch: 13 [14848/60000 (25%)]	Loss: 0.010539
    Train Epoch: 13 [30208/60000 (50%)]	Loss: 0.002952
    Train Epoch: 13 [45568/60000 (75%)]	Loss: 0.002313
    
    Test set: Average loss: 0.0293, Accuracy: 9905/10000 (99%)
    
    Train Epoch: 14 [14848/60000 (25%)]	Loss: 0.002100
    Train Epoch: 14 [30208/60000 (50%)]	Loss: 0.000779
    Train Epoch: 14 [45568/60000 (75%)]	Loss: 0.005952
    
    Test set: Average loss: 0.0335, Accuracy: 9897/10000 (99%)
    
    Train Epoch: 15 [14848/60000 (25%)]	Loss: 0.006053
    Train Epoch: 15 [30208/60000 (50%)]	Loss: 0.002559
    Train Epoch: 15 [45568/60000 (75%)]	Loss: 0.002555
    
    Test set: Average loss: 0.0357, Accuracy: 9894/10000 (99%)
    
    Train Epoch: 16 [14848/60000 (25%)]	Loss: 0.000895
    Train Epoch: 16 [30208/60000 (50%)]	Loss: 0.004923
    Train Epoch: 16 [45568/60000 (75%)]	Loss: 0.002339
    
    Test set: Average loss: 0.0400, Accuracy: 9893/10000 (99%)
    
    Train Epoch: 17 [14848/60000 (25%)]	Loss: 0.004136
    Train Epoch: 17 [30208/60000 (50%)]	Loss: 0.000927
    Train Epoch: 17 [45568/60000 (75%)]	Loss: 0.002084
    
    Test set: Average loss: 0.0353, Accuracy: 9895/10000 (99%)
    
    Train Epoch: 18 [14848/60000 (25%)]	Loss: 0.004508
    Train Epoch: 18 [30208/60000 (50%)]	Loss: 0.001272
    Train Epoch: 18 [45568/60000 (75%)]	Loss: 0.000543
    
    Test set: Average loss: 0.0380, Accuracy: 9894/10000 (99%)
    
    Train Epoch: 19 [14848/60000 (25%)]	Loss: 0.001699
    Train Epoch: 19 [30208/60000 (50%)]	Loss: 0.000661
    Train Epoch: 19 [45568/60000 (75%)]	Loss: 0.000275
    
    Test set: Average loss: 0.0339, Accuracy: 9905/10000 (99%)
    
    Train Epoch: 20 [14848/60000 (25%)]	Loss: 0.000441
    Train Epoch: 20 [30208/60000 (50%)]	Loss: 0.000695
    Train Epoch: 20 [45568/60000 (75%)]	Loss: 0.000467
    
    Test set: Average loss: 0.0396, Accuracy: 9894/10000 (99%)
    

    まとめ


    実際のプロジェクトのワークフロー:データセットを見つけて、データを前処理して、私たちのモデルを定義して、スーパーパラメータを調整して、テスト訓練して、更に訓練の結果を通じてスーパーパラメータを調整してあるいはモデルを調整します.