# import tensorflow as tf
#
# sess = tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True))
# False, tensorflow-gpu、cudatoolkit cudnn
# print(tf.test.is_gpu_available())
from __future__ import print_function
'''
Basic Multi GPU computation example using TensorFlow library.
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
'''
This tutorial requires your machine to have 1 GPU
"/cpu:0": The CPU of your machine.
"/gpu:0": The first GPU of your machine
'''
import numpy as np
import tensorflow as tf
import datetime
tf.compat.v1.disable_eager_execution()
# Processing Units logs
log_device_placement = True
# Num of multiplications to perform
n = 10
'''
Example: compute A^n + B^n on 2 GPUs
Results on 8 cores with 2 GTX-980:
* Single GPU computation time: 0:00:11.277449
* Multi GPU computation time: 0:00:07.131701
'''
# Create random large matrix
A = np.random.rand(10000, 10000).astype('float32')
B = np.random.rand(10000, 10000).astype('float32')
# Create a graph to store results
c1 = []
c2 = []
def matpow(M, n):
if n < 1: #Abstract cases where n < 1
return M
else:
return tf.compat.v1.matmul(M, matpow(M, n-1))
'''
Single GPU computing
'''
with tf.device('/gpu:0'):
a = tf.compat.v1.placeholder(tf.float32, [10000, 10000])
b = tf.compat.v1.placeholder(tf.float32, [10000, 10000])
# Compute A^n and B^n and store results in c1
c1.append(matpow(a, n))
c1.append(matpow(b, n))
with tf.compat.v1.device('/cpu:0'):
sum = tf.compat.v1.add_n(c1) #Addition of all elements in c1, i.e. A^n + B^n
t1_1 = datetime.datetime.now()
with tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=log_device_placement)) as sess:
# Run the op.
sess.run(sum, {a:A, b:B})
t2_1 = datetime.datetime.now()
print("Single GPU computation time: " + str(t2_1-t1_1))