tensorflow 2に基づくモデルトリミング(mnistのsizeとaccuracyテスト)

38467 ワード

Copyright 2020 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Pruning in Keras example


View on TensorFlow.org
Run in Google Colab
View source on GitHub
Download notebook

Overview


Welcome to an end-to-end example for magnitude-based weight pruning.

Other pages


For an introduction to what pruning is and to determine if you should use it (including what’s supported), see the overview page.
To quickly find the APIs you need for your use case (beyond fully pruning a model with 80% sparsity), see the comprehensive guide.

Summary


In this tutorial, you will:
  • Train a tf.keras model for MNIST from scratch.
  • Fine tune the model by applying the pruning API and see the accuracy.
  • Create 3x smaller TF and TFLite models from pruning.
  • Create a 10x smaller TFLite model from combining pruning and post-training quantization.
  • See the persistence of accuracy from TF to TFLite.

  • Setup

    ! pip install -q tensorflow-model-optimization
    
    import tempfile
    import os
    
    import tensorflow as tf
    import numpy as np
    
    from tensorflow import keras
    
    %load_ext tensorboard
    

    Train a model for MNIST without pruning

    # Load MNIST dataset
    mnist = keras.datasets.mnist
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    
    # Normalize the input image so that each pixel value is between 0 to 1.
    train_images = train_images / 255.0
    test_images = test_images / 255.0
    
    # Define the model architecture.
    model = keras.Sequential([
      keras.layers.InputLayer(input_shape=(28, 28)),
      keras.layers.Reshape(target_shape=(28, 28, 1)),
      keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
      keras.layers.MaxPooling2D(pool_size=(2, 2)),
      keras.layers.Flatten(),
      keras.layers.Dense(10)
    ])
    
    # Train the digit classification model
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    
    model.fit(
      train_images,
      train_labels,
      epochs=4,
      validation_split=0.1,
    )
    
    Train on 54000 samples, validate on 6000 samples
    Epoch 1/4
    54000/54000 [==============================] - 5s 99us/sample - loss: 0.2821 - accuracy: 0.9218 - val_loss: 0.1081 - val_accuracy: 0.9698
    Epoch 2/4
    54000/54000 [==============================] - 4s 77us/sample - loss: 0.1056 - accuracy: 0.9697 - val_loss: 0.0894 - val_accuracy: 0.9773
    Epoch 3/4
    54000/54000 [==============================] - 4s 77us/sample - loss: 0.0788 - accuracy: 0.9775 - val_loss: 0.0722 - val_accuracy: 0.9807
    Epoch 4/4
    54000/54000 [==============================] - 4s 77us/sample - loss: 0.0650 - accuracy: 0.9810 - val_loss: 0.0620 - val_accuracy: 0.9822
    
    
    
    
    
    
    

    Evaluate baseline test accuracy and save the model for later usage.
    _, baseline_model_accuracy = model.evaluate(
        test_images, test_labels, verbose=0)
    
    print('Baseline test accuracy:', baseline_model_accuracy)
    
    _, keras_file = tempfile.mkstemp('.h5')
    tf.keras.models.save_model(model, keras_file, include_optimizer=False)
    print('Saved baseline model to:', keras_file)
    
    Baseline test accuracy: 0.9789
    Saved baseline model to: C:\Users\ADMINI~1\AppData\Local\Temp\tmpsp7m79vf.h5
    

    Fine-tune pre-trained model with pruning


    Define the model


    You will apply pruning to the whole model and see this in the model summary.
    In this example, you start the model with 50% sparsity (50% zeros in weights) and end with 80% sparsity.
    In the comprehensive guide, you can see how to prune some layers for model accuracy improvements.
    import tensorflow_model_optimization as tfmot
    
    prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
    
    # Compute end step to finish pruning after 2 epochs.
    batch_size = 128
    epochs = 2
    validation_split = 0.1 # 10% of training set will be used for validation set. 
    
    num_images = train_images.shape[0] * (1 - validation_split)
    end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs
    
    # Define model for pruning.
    pruning_params = {
          'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
                                                                   final_sparsity=0.80,
                                                                   begin_step=0,
                                                                   end_step=end_step)
    }
    
    model_for_pruning = prune_low_magnitude(model, **pruning_params)
    
    # `prune_low_magnitude` requires a recompile.
    model_for_pruning.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    
    model_for_pruning.summary()
    
    Model: "sequential"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    prune_low_magnitude_reshape  (None, 28, 28, 1)         1         
    _________________________________________________________________
    prune_low_magnitude_conv2d ( (None, 26, 26, 12)        230       
    _________________________________________________________________
    prune_low_magnitude_max_pool (None, 13, 13, 12)        1         
    _________________________________________________________________
    prune_low_magnitude_flatten  (None, 2028)              1         
    _________________________________________________________________
    prune_low_magnitude_dense (P (None, 10)                40572     
    =================================================================
    Total params: 40,805
    Trainable params: 20,410
    Non-trainable params: 20,395
    _________________________________________________________________
    

    Train and evaluate the model against baseline


    Fine tune with pruning for two epochs. tfmot.sparsity.keras.UpdatePruningStep is required during training, and tfmot.sparsity.keras.PruningSummaries provides logs for tracking progress and debugging.
    logdir = tempfile.mkdtemp()
    
    callbacks = [
      tfmot.sparsity.keras.UpdatePruningStep(),
      tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
    ]
      
    model_for_pruning.fit(train_images, train_labels,
                      batch_size=batch_size, epochs=epochs, validation_split=validation_split,
                      callbacks=callbacks)
    
    Train on 54000 samples, validate on 6000 samples
    Epoch 1/2
    54000/54000 [==============================] - 3s 64us/sample - loss: 0.0820 - accuracy: 0.9766 - val_loss: 0.0740 - val_accuracy: 0.9793
    Epoch 2/2
    54000/54000 [==============================] - 3s 51us/sample - loss: 0.0762 - accuracy: 0.9780 - val_loss: 0.0737 - val_accuracy: 0.9797
    
    
    
    
    
    
    

    For this example, there is minimal loss in test accuracy after pruning, compared to the baseline.
    _, model_for_pruning_accuracy = model_for_pruning.evaluate(
       test_images, test_labels, verbose=0)
    
    print('Baseline test accuracy:', baseline_model_accuracy) 
    print('Pruned test accuracy:', model_for_pruning_accuracy)
    
    Baseline test accuracy: 0.9789
    Pruned test accuracy: 0.9756
    

    The logs show the progression of sparsity on a per-layer basis.
    #docs_infra: no_execute
    %tensorboard --logdir={logdir}
    
    Reusing TensorBoard on port 6006 (pid 4140), started 0:00:58 ago. (Use '!kill 4140' to kill it.)
    

    For non-Colab users, you can see the results of a previous run of this code block on TensorBoard.dev.

    Create 3x smaller models from pruning


    Both tfmot.sparsity.keras.strip_pruning and applying a standard compression algorithm (e.g. via gzip) are necessary to see the compression benefits of pruning.
    First, create a compressible model for TensorFlow.
    model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)
    
    _, pruned_keras_file = tempfile.mkstemp('.h5')
    tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
    print('Saved pruned Keras model to:', pruned_keras_file)
    
    Saved pruned Keras model to: C:\Users\ADMINI~1\AppData\Local\Temp\tmp6z2r60jw.h5
    

    Then, create a compressible model for TFLite.
    converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
    pruned_tflite_model = converter.convert()
    
    _, pruned_tflite_file = tempfile.mkstemp('.tflite')
    
    with open(pruned_tflite_file, 'wb') as f:
      f.write(pruned_tflite_model)
    
    print('Saved pruned TFLite model to:', pruned_tflite_file)
    
    Saved pruned TFLite model to: C:\Users\ADMINI~1\AppData\Local\Temp\tmpkr5csyxn.tflite
    

    Define a helper function to actually compress the models via gzip and measure the zipped size.
    def get_gzipped_model_size(file):
      # Returns size of gzipped model, in bytes.
      import os
      import zipfile
    
      _, zipped_file = tempfile.mkstemp('.zip')
      with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
        f.write(file)
    
      return os.path.getsize(zipped_file)
    

    Compare and see that the models are 3x smaller from pruning.
    print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
    print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
    print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
    
    Size of gzipped baseline Keras model: 78000.00 bytes
    Size of gzipped pruned Keras model: 25798.00 bytes
    Size of gzipped pruned TFlite model: 24754.00 bytes
    

    Create a 10x smaller model from combining pruning and quantization


    You can apply post-training quantization to the pruned model for additional benefits.
    converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    quantized_and_pruned_tflite_model = converter.convert()
    
    _, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')
    
    with open(quantized_and_pruned_tflite_file, 'wb') as f:
      f.write(quantized_and_pruned_tflite_model)
    
    print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)
    
    print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
    print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
    
    Saved quantized and pruned TFLite model to: C:\Users\ADMINI~1\AppData\Local\Temp\tmpee3ob04_.tflite
    Size of gzipped baseline Keras model: 78000.00 bytes
    Size of gzipped pruned and quantized TFlite model: 7774.00 bytes
    

    See persistence of accuracy from TF to TFLite


    Define a helper function to evaluate the TF Lite model on the test dataset.
    import numpy as np
    
    def evaluate_model(interpreter):
      input_index = interpreter.get_input_details()[0]["index"]
      output_index = interpreter.get_output_details()[0]["index"]
    
      # Run predictions on ever y image in the "test" dataset.
      prediction_digits = []
      for i, test_image in enumerate(test_images):
        if i % 1000 == 0:
          print('Evaluated on {n} results so far.'.format(n=i))
        # Pre-processing: add batch dimension and convert to float32 to match with
        # the model's input data format.
        test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
        interpreter.set_tensor(input_index, test_image)
    
        # Run inference.
        interpreter.invoke()
    
        # Post-processing: remove batch dimension and find the digit with highest
        # probability.
        output = interpreter.tensor(output_index)
        digit = np.argmax(output()[0])
        prediction_digits.append(digit)
    
      print('
    '
    ) # Compare prediction results with ground truth labels to calculate accuracy. prediction_digits = np.array(prediction_digits) accuracy = (prediction_digits == test_labels).mean() return accuracy

    You evaluate the pruned and quantized model and see that the accuracy from TensorFlow persists to the TFLite backend.
    interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
    interpreter.allocate_tensors()
    
    test_accuracy = evaluate_model(interpreter)
    
    print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
    print('Pruned TF test accuracy:', model_for_pruning_accuracy)
    
    Evaluated on 0 results so far.
    Evaluated on 1000 results so far.
    Evaluated on 2000 results so far.
    Evaluated on 3000 results so far.
    Evaluated on 4000 results so far.
    Evaluated on 5000 results so far.
    Evaluated on 6000 results so far.
    Evaluated on 7000 results so far.
    Evaluated on 8000 results so far.
    Evaluated on 9000 results so far.
    
    
    Pruned and quantized TFLite test_accuracy: 0.9755
    Pruned TF test accuracy: 0.9756
    

    Conclusion


    In this tutorial, you saw how to create sparse models with the TensorFlow Model Optimization Toolkit API for both TensorFlow and TFLite. You then combined pruning with post-training quantization for additional benefits.
    You created a 10x smaller model for MNIST, with minimal accuracy difference.
    We encourage you to try this new capability, which can be particularly important for deployment in resource-constrained environments.