pytorchテストdarknet

4643 ワード

import time import torch import torch.nn as nn import math from collections import OrderedDict # from nets.coordConv import CoordConv class BasicBlock(nn.Module): def __init__(self, inplanes, planes,dim): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1,stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(planes[0]) self.relu1 = nn.LeakyReLU(0.1) self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3,stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes[1]) self.relu2 = nn.LeakyReLU(0.1) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out += residual return out class DarkNet(nn.Module): def __init__(self, layers): super(DarkNet, self).__init__() self.inplanes = 32 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu1 = nn.LeakyReLU(0.1) self.layer1 = self._make_layer([32, 64], layers[0],0) self.layer2 = self._make_layer([64, 128], layers[1],1) self.layer3 = self._make_layer([128, 256], layers[2],2) self.layer4 = self._make_layer([256, 512], layers[3],3) self.layer5 = self._make_layer([512, 1024], layers[4],4) self.layers_out_filters = [64, 128, 256, 512, 1024] for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) # if isinstance(m, CoordConv): # n = m.conv.kernel_size[0] * m.conv.kernel_size[1] * m.conv.out_channels # m.conv.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, planes, blocks,layer_num): layers = [] dim=208 if layer_num==0: dim=416 elif layer_num==1: dim=208 elif layer_num == 2: dim = 104 elif layer_num == 3: dim = 52 elif layer_num == 4: dim = 26 # downsample layers.append(("ds_conv", nn.Conv2d(self.inplanes, planes[1], kernel_size=3,stride=2, padding=1, bias=False))) # layers.append(("ds_conv",CoordConv(dim,self.inplanes, planes[1], kernel_size=3,stride=2, padding=1, bias=False))) layers.append(("ds_bn", nn.BatchNorm2d(planes[1]))) layers.append(("ds_relu", nn.LeakyReLU(0.1))) # blocks self.inplanes = planes[1] for i in range(0, blocks): layers.append(("residual_{}".format(i), BasicBlock(self.inplanes, planes,dim//2))) return nn.Sequential(OrderedDict(layers)) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) out3 = self.layer3(x) out4 = self.layer4(out3) out5 = self.layer5(out4) return out3, out4, out5 def darknet21(pretrained, **kwargs): """Constructs a darknet-21 model. """ model = DarkNet([1, 1, 2, 2, 1]) if pretrained: if isinstance(pretrained, str): model.load_state_dict(torch.load(pretrained)) else: raise Exception("darknet request a pretrained path. got [{}]".format(pretrained)) return model def darknet53(pretrained, **kwargs): """Constructs a darknet-53 model. """ model = DarkNet([1, 2, 8, 8, 4]) if pretrained: if isinstance(pretrained, str): model.load_state_dict(torch.load(pretrained)) else: raise Exception("darknet request a pretrained path. got [{}]".format(pretrained)) return model if __name__ == '__main__': model = DarkNet([1, 2, 8, 8, 4]) model.eval() for i in range(2): t1 = time.time() x = torch.rand(1, 3, 352, 352) out3 = model(x) for out in out3: print(out.shape) cnt = time.time() - t1 print(cnt) torch.Size([1, 256, 44, 44])
torch.Size([1, 512, 22, 22])
torch.Size([1, 1024, 11, 11])
0.6449689865112305