[Programmers]Graph-最遠ノード(Python)


ソース

Graph:最も遠いノード[Lv.3]


問題の説明


n個のノードを含むグラフィック.各ノード番号は1からnです.1ノードに最も近いノード数を取得します.最遠ノードとは、最短経路に移動したときに幹線数が最も多いノードを指す.
ノード個数n、幹線情報を含む2次元配列頂点をパラメータとして指定する場合は、1番ノードに最も近いノード数を返す解関数を作成します.

せいげんじょうけん


ノード数nは2万個を超えない.
幹線は双方向で、全部で1本以上50000本以下の幹線があります.
頂点配列の各行[a,b]は、a番ノードとb番ノードの間に幹線があることを示す.

I/O例


nvertexreturn6[[3, 6], [4, 3], [3, 2], [1, 3], [1, 2], [2, 4], [5, 2]]3

I/O例説明


下図に示すように,1番ノードから最も遠いノードは4,5,6番ノードである.

 

Solution


説明する

def solution(n, edge):

    graph = dict()
    for n1, n2 in edge:			# 엣지 양 끝의 두 노드
        if n1 in graph:			# n1 키가 딕셔너리에 존재한다면
            # 딕셔너리에 존재하는 기존 값에 n2 추가
            node1 = graph.get(n1)
            node1.add(n2)
            graph[n1] = node1
        else:				# n1 키가 딕셔너리에 존재하지 않다면
            graph[n1] = {n2}		# 새로 Set을 만들어 딕셔너리에 추가
        # 위와 동일. n1, n2만 바뀜.
        if n2 in graph:
            node2 = graph.get(n2)
            node2.add(n1)
            graph[n2] = node2
        else:
            graph[n2] = {n1}
	
    distance = dict()			# n1까지의 최단거리를 저장할 딕셔너리
    check = [0 for _ in range(n+1)]	# 노드 확인용 리스트
    check[1] = 1			# 시작 노드
    # bfs를 위한 queue. 1번 노드에 연결된 노드들을 
    # [노드번호, 1번 노드와의 거리] 형태도 queue에 넣는다. 
    queue = deque([node, 1] for node in list(graph.get(1)))
    
    # bfs 시작
    while queue:
        node, cnt = queue.popleft()	# 노드 번호와 1번 노드와의 거리
        if check[node] == 1:		# 이전에 한 번 확인한 적이 있다면
            # 이전에 저장된 값과 이번 값 중 작은것을 저장
            distance[node] = min(cnt, distance.get(node))
            continue			# 뒤는 할 필요 없으므로 다음으로 넘김

        check[node] = 1			# 체크
        distance[node] = cnt		# 거리 저장
        # 현재 노드에 연결된 노드 중 가보지 않은 노드들을 queue에 저장
        for next_node in list(graph.get(node)):
            if check[next_node] == 0:
                queue.append([next_node, cnt+1])

    # 저장된 값들 중 가장 큰 값의 개수를 구하여 answer에 저장
    distance = list(distance.values())
    answer = distance.count(max(distance))

    return answer
グラフィックをディックシーケンス図に作成し,各ノードをキーとし,そのノードに画像で接続されたノードをSetとして組み合わせて値を生成する.私はそうしていますが、ノードは1から順番に存在し、より簡単にするためにリストだけでいいです.(距離が同じ)
bfsにより各ノードの最小距離を求め,最小距離を距離に格納する.すべてが終わったら、最長距離の数を返します.
ディクシャラーニを使用してより簡単に実現したい場合は、checkリストを使用する必要もありません.if check[node] == 1部分をif node in distanceに変更すると、同じ役割をチェックする必要がなくなります.次のif check[nexe_node] == 0if next_node not in distnaceに変えて、同じ役割を果たすはずです.

結果