Pandas本体4
Pandasの演算と関数
データフレームが空かどうかを確認
# Pandas 불러오기 및 pd로 설정
import numpy as np
import pandas as pd
word_dict = {
'Apple': '사과',
'Banana': '바나나',
'Carrot': '당근',
'Durian': '두리안'
}
frequency_dict = {
'Apple': 3,
'Banana': 5,
'Carrot': np.nan,
'Durian': 2
}
importance_dict = {
'Apple': 3,
'Banana': 2,
'Carrot': 1,
'Durian': 1
}
word = pd.Series(word_dict)
frequency = pd.Series(frequency_dict)
importance = pd.Series(importance_dict)
summary = pd.DataFrame({
'word': word,
'frequency': frequency,
'importance': importance
})
print(summary)
# 값이 null이 아니면 True null이면 False
print(summary.notnull())
# 값이 null이면 True null이 아니면 False
print(summary.isnull())
# fillna로 null값 채우기
summary['frequency'] = summary['frequency'].fillna('데이터 없음')
print(summary)
結果



シリアルデータ型の演算
array1 = pd.Series([1, 2, 3], index=['A', 'B', 'C'])
array2 = pd.Series([4, 5, 6], index=['B', 'C', 'D'])
print(array1)
print(array2)
# add 함수를 이용해서 시리즈 더하기
array3 = array1.add(array2)
print(array3)
# fill_value로 null값에 0채워서 계산하기
array3 = array1.add(array2, fill_value=0)
print(array3)
print(array3.sum())
結果




データフレームデータ型の演算
array1 = pd.DataFrame([[1, 2], [3, 4]], index=['A', 'B'])
array2 = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['B', 'C', 'D'])
print(array1)
print(array2)
# add 함수를 이용해서 데이터 프레임 더하기
array3 = array1.add(array2)
print(array3)
# fill_value를 이용해서 null값에 0을 채워서 계산하기
array3 = array1.add(array2, fill_value=0)
print(array3)
結果



データフレーム集約/ソート関数
print(array3)
print("컬럼 1의 합 :", array3[1].sum())
# 기본 적으로 NaN은 0으로 계산 : 집계함수 특성
print(array3.sum())
# 데이터 프레임 정렬 함수
print(array3)
# 컬럼 1을 기준으로 내림차순 오름차순 정렬
array3 = array3.sort_values(1, ascending=True)
print(array3)
結果




Reference
この問題について(Pandas本体4), 我々は、より多くの情報をここで見つけました https://velog.io/@imchanyang/Pandas-기본-4テキストは自由に共有またはコピーできます。ただし、このドキュメントのURLは参考URLとして残しておいてください。
Collection and Share based on the CC Protocol