Pat(Advanced Level)Practice--1099(Build A Binary Search Tree )
Pat 1099コード
タイトルの説明:
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greater than or equal to the node's key. Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input: 9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output: 58 25 82 11 38 67 45 73 42
ACコード:#include
#include
#include
#include
#include
#define MAXN 105
using namespace std;
int n;
int keys[MAXN];
int tree[MAXN][3];
int num=0;
int flag=1;
queue q;
void inorder(int loc){
if(tree[loc][1]!=-1){
inorder(tree[loc][1]);
}
tree[loc][0]=keys[num];
num++;
if(tree[loc][2]!=-1){
inorder(tree[loc][2]);
}
}
void level(){
q.push(0);
while(!q.empty()){
int cur=q.front();
q.pop();
if(flag){
flag=0;
printf("%d",tree[cur][0]);
}else{
printf(" %d",tree[cur][0]);
}
if(tree[cur][1]!=-1){
q.push(tree[cur][1]);
}
if(tree[cur][2]!=-1){
q.push(tree[cur][2]);
}
}
printf("
");
}
int main(int argc,char *argv[]){
scanf("%d",&n);
for(int i=0;i
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
58 25 82 11 38 67 45 73 42
#include
#include
#include
#include
#include
#define MAXN 105
using namespace std;
int n;
int keys[MAXN];
int tree[MAXN][3];
int num=0;
int flag=1;
queue q;
void inorder(int loc){
if(tree[loc][1]!=-1){
inorder(tree[loc][1]);
}
tree[loc][0]=keys[num];
num++;
if(tree[loc][2]!=-1){
inorder(tree[loc][2]);
}
}
void level(){
q.push(0);
while(!q.empty()){
int cur=q.front();
q.pop();
if(flag){
flag=0;
printf("%d",tree[cur][0]);
}else{
printf(" %d",tree[cur][0]);
}
if(tree[cur][1]!=-1){
q.push(tree[cur][1]);
}
if(tree[cur][2]!=-1){
q.push(tree[cur][2]);
}
}
printf("
");
}
int main(int argc,char *argv[]){
scanf("%d",&n);
for(int i=0;i