PAT(Advanced Level)Practice 1099 Build A Binary Search Tree(30分)
12099 ワード
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node’s key. The right subtree of a node contains only nodes with keys greater than or equal to the node’s key. Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2. ![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMucHRhdXNlcmNvbnRlbnQuY29tLzI0YzI1MjFmLWFhZWQtNGVmNC1iYWM4LTNmZjU2MmQ4MGExYi5qcGc?x-oss-process=image/format,png#align=left&display=inline&height=341&margin=[object Object]&originHeight=341&originWidth=549&status=done&style=none&width=549)
Each input file contains one test case. For each case, the first line gives a positive integer N ( ≤ 100 ) N\(≤100) N (≤100) which is the total number of nodes in the tree. The next N N N lines each contains the left and the right children of a node in the format
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
二叉木の構造と同じ数字を含まないシーケンスを与えると、これらの数字をこの木のノードに埋め込み、BSTにする方法は1つしかありません.この木の層序遍歴を求めます.
BSTの中順遍歴は秩序化されており,この性質を利用してキーワードをノードに埋め込むことができる.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2. ![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMucHRhdXNlcmNvbnRlbnQuY29tLzI0YzI1MjFmLWFhZWQtNGVmNC1iYWM4LTNmZjU2MmQ4MGExYi5qcGc?x-oss-process=image/format,png#align=left&display=inline&height=341&margin=[object Object]&originHeight=341&originWidth=549&status=done&style=none&width=549)
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N ( ≤ 100 ) N\(≤100) N (≤100) which is the total number of nodes in the tree. The next N N N lines each contains the left and the right children of a node in the format
left_index right_index
, provided that the nodes are numbered from 0 0 0 to N − 1 N-1 N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N N N distinct integer keys are given in the last line. Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42
に言及
二叉木の構造と同じ数字を含まないシーケンスを与えると、これらの数字をこの木のノードに埋め込み、BSTにする方法は1つしかありません.この木の層序遍歴を求めます.
構想
BSTの中順遍歴は秩序化されており,この性質を利用してキーワードをノードに埋め込むことができる.
コード#コード#
#include
#include
#include
using namespace std;
struct {
int val;
int lChild, rChild;
} node[105];
int arr[105];
int inOrder(int root, int &index) {
if (node[root].lChild != -1)
inOrder(node[root].lChild, index);
node[root].val = arr[index++];
if (node[root].rChild != -1)
inOrder(node[root].rChild, index);
}
void levelOrder() {
queue<int> q;
q.push(0);
while (not q.empty()) {
int top = q.front();
q.pop();
cout << node[top].val;
if (node[top].lChild != -1) q.push(node[top].lChild);
if (node[top].rChild != -1) q.push(node[top].rChild);
if (not q.empty()) cout << " ";
}
}
int main() {
int n;
cin >> n;
for (int i = 0; i < n; ++i)
cin >> node[i].lChild >> node[i].rChild;
for (int i = 0; i < n; ++i)
cin >> arr[i];
sort(arr, arr + n);
int i = 0;
inOrder(0, i);
levelOrder();
}