PAT(Advanced Level)Practice 1099 Build A Binary Search Tree(30分)

12099 ワード

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
  • The left subtree of a node contains only nodes with keys less than the node’s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
  • Both the left and right subtrees must also be binary search trees.

  • Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2. ![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9pbWFnZXMucHRhdXNlcmNvbnRlbnQuY29tLzI0YzI1MjFmLWFhZWQtNGVmNC1iYWM4LTNmZjU2MmQ4MGExYi5qcGc?x-oss-process=image/format,png#align=left&display=inline&height=341&margin=[object Object]&originHeight=341&originWidth=549&status=done&style=none&width=549)

    Input Specification:


    Each input file contains one test case. For each case, the first line gives a positive integer N   ( ≤ 100 ) N\(≤100) N (≤100) which is the total number of nodes in the tree. The next N N N lines each contains the left and the right children of a node in the format left_index right_index , provided that the nodes are numbered from 0 0 0 to N − 1 N-1 N−1, and 0 is always the root. If one child is missing, then −1 will represent the NULL child pointer. Finally N N N distinct integer keys are given in the last line.

    Output Specification:


    For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

    Sample Input:

    9
    1 6
    2 3
    -1 -1
    -1 4
    5 -1
    -1 -1
    7 -1
    -1 8
    -1 -1
    73 45 11 58 82 25 67 38 42
    

    Sample Output:

    58 25 82 11 38 67 45 73 42
    

    に言及


    二叉木の構造と同じ数字を含まないシーケンスを与えると、これらの数字をこの木のノードに埋め込み、BSTにする方法は1つしかありません.この木の層序遍歴を求めます.

    構想


    BSTの中順遍歴は秩序化されており,この性質を利用してキーワードをノードに埋め込むことができる.

    コード#コード#

    #include 
    #include 
    #include 
    
    using namespace std;
    
    struct {
        int val;
        int lChild, rChild;
    } node[105];
    
    int arr[105];
    
    int inOrder(int root, int &index) {
        if (node[root].lChild != -1)
            inOrder(node[root].lChild, index);
    
        node[root].val = arr[index++];
    
        if (node[root].rChild != -1)
            inOrder(node[root].rChild, index);
    }
    
    void levelOrder() {
        queue<int> q;
        q.push(0);
    
        while (not q.empty()) {
            int top = q.front();
            q.pop();
    
            cout << node[top].val;
    
            if (node[top].lChild != -1) q.push(node[top].lChild);
            if (node[top].rChild != -1) q.push(node[top].rChild);
    
            if (not q.empty()) cout << " ";
        }
    }
    
    int main() {
        int n;
        cin >> n;
    
        for (int i = 0; i < n; ++i)
            cin >> node[i].lChild >> node[i].rChild;
    
        for (int i = 0; i < n; ++i)
            cin >> arr[i];
    
        sort(arr, arr + n);
    
        int i = 0;
        inOrder(0, i);
    
        levelOrder();
    }