pythonデータ可視化ライブラリ
import pandas as pd
unrate = pd.read_csv("UNRATE.csv")
unrate['DATE'] = pd.to_datetime(unrate['DATE']) ## 1992/2/1 datetime
#print(unrate.head(12))
import matplotlib.pyplot as plt
# first_twelve = unrate[0:12]
# plt.plot(first_twelve["DATE"],first_twelve["VALUE"]) ##plot , ,
# plt.xticks(rotation=45) ## 45
# plt.xlabel('Month')
# plt.ylabel('Unemployment Rate')
# plt.title(' 1948 shi ye lv')
# plt.show() ##
from Matplotlibobj.demo import unrate
fig = plt.figure(figsize=(10,6))
colors = ['red','blue','green','orange','black']
for i in range(5):
start_index = i*12
end_index =(i+1)*12
subset =unrate[start_index:end_index]
label = str(1948+i)
plt.plot(subset['DATE'],subset['VALUE'],c=colors[i],label = label)### ,label , legent
#plt.legend(loc='best') ###legend 。
plt.legend(loc='upper left')
plt.xlabel('Month, integer')
plt.ylabel('Unemplyment Rate,Percent')
plt.title('Monthly Unemployment Trends,1948-1952')
plt.show()
#####
matplotlib説明
import pandas as pd
from numpy import arange
import matplotlib.pyplot as plt
reviews = pd.read_csv('fandango_scores.csv')
num_cols = ['RT_user_norm','Metacritic_user_nom','IMDB_norm','Fandango_Ratingvalue','Fandango_Stars']
norm_reviews = reviews[num_cols]
#print(norm_reviews[:1])
## , ,1. ,2. X
bar_heights = norm_reviews.ix[0,num_cols].values ##
print(bar_heights)
# bar_positions = arange(5)+0.75 ### , 0
# tick_positions = range(1,6)
# print(bar_positions)##
# fig,ax = plt.subplots() ## ,ax bar
# ax.barh(bar_positions,bar_heights,0.8) ##0.8 bar ,barh
#####
# ax.set_yticks(tick_positions)
# ax.set_yticklabels(num_cols)
# ax.set_ylabel('Rating Source')
# ax.set_xlabel('Average Rating')
# ax.set_title('Average user rating for avengers :Age of Utron(2015)')
# plt.show()
### : 2 , , , ascatter 。
# fig,ax= plt.subplots() ### fig ,ax ,fig
# ax.scatter(norm_reviews['Fandango_Ratingvalue'],norm_reviews['RT_user_norm']) # 2
# ax.set_xlabel('Fandango') ##
# ax.set_ylabel('Rotten Tomatoes') ##
# plt.show()
#### ,
#### , 。
# fig, ax = plt.subplots()
# #ax.hist(norm_reviews['Fandango_Ratingvalue']) ###.hist bins , binds binds
# ax.hist(norm_reviews['Fandango_Ratingvalue'],bins=20)
# #ax.hist(norm_reviews['Fandango_Ratingvalue'],range = (4,5),bins=20)
# plt.show()
### : 。
# fig,ax = plt.subplots()
# ax.boxplot(norm_reviews['RT_user_norm']) ## ,
# ax.set_xticklabels(['Rotten Tomatoes']) ## x
# ax.set_ylim(0,5)## y
# plt.show()
##
fig,ax = plt.subplots()
ax.boxplot(norm_reviews[num_cols].values)
ax.tick_params(bottom="off",top="off",left="off",right="off")## ,
ax.set_xticklabels(num_cols,rotation=90)
ax.set_ylim(0,5)
plt.show()
#####RGB
cb_dark_blue = (0/255,107/255,164/255) ## /255
cb_orange = (255/255,128/255,14/255)
linewidth = 10 ##
### 。 。 , figsize
fig = plt.figure(figsize=(12,12))