機械学習実戦--KNNコード解析


'''
kNN: K    

Input:      inX:       
            dataSet:      
            labels:     
            k:        
            
Output:              k  
  KNN      

'''
from numpy import *
import operator
from os import listdir

def classify0(inX, dataSet, labels, k):
    """
        ,inx 
    """
    dataSetSize = dataSet.shape[0]  #  
    diffMat = tile(inX, (dataSetSize,1)) - dataSet   #         
    sqDiffMat = diffMat**2   #   
    sqDistances = sqDiffMat.sum(axis=1) #      
    distances = sqDistances**0.5        #   
    sortedDistIndicies = distances.argsort()   #             
    classCount={}          
    for i in range(k):  
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1    #         1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)  #       
    return sortedClassCount[0][0]  #      

def createDataSet():
    """
         
    """
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) #     
    labels = ['A','A','B','B']   #  
    return group, labels

def file2matrix(filename):
    """
           ,       
    """  
    fr = open(filename)    #    
    numberOfLines = len(fr.readlines())         #     ,         
    returnMat = zeros((numberOfLines,3))        #    ,     ,   
    classLabelVector = []                       #       
    fr = open(filename)
    index = 0
    for line in fr.readlines():   #      
        line = line.strip()   #          
        listFromLine = line.split('\t')   #     tab     
        returnMat[index,:] = listFromLine[0:3]  #      
        classLabelVector.append(int(listFromLine[-1]))   #    
        index += 1
    return returnMat,classLabelVector    #    、     
    
def autoNorm(dataSet):
    """
           
    """ 
    minVals = dataSet.min(0)  #        
    maxVals = dataSet.max(0) #        
    ranges = maxVals - minVals   #          
    normDataSet = zeros(shape(dataSet))   #      (   ,   ),    
    m = dataSet.shape[0]  #         
    normDataSet = dataSet - tile(minVals, (m,1))  # minVals  m ,1    ,          
    normDataSet = normDataSet/tile(ranges, (m,1))   #         ,      [0-1]
    return normDataSet, ranges, minVals  #          ,    ,   
   
def datingClassTest():
    """
          
    """
    hoRatio = 0.50      #hold out 10%          
    datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')       #    ,    、  
    normMat, ranges, minVals = autoNorm(datingDataMat)  #     
    m = normMat.shape[0]    #      
    numTestVecs = int(m*hoRatio)   #        
    errorCount = 0.0     #   
    for i in range(numTestVecs):   #       
        classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)   #    
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f" % (errorCount/float(numTestVecs)) #     
    print errorCount

    
def img2vector(filename):

    """
                  

    """
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def handwritingClassTest():
    """
            
    """
    hwLabels = []
    trainingFileList = listdir('trainingDigits')           #        ,    
    m = len(trainingFileList)  #    
    trainingMat = zeros((m,1024))  #    
    for i in range(m):
        fileNameStr = trainingFileList[i]  
        fileStr = fileNameStr.split('.')[0]     #     '.'    
        classNumStr = int(fileStr.split('_')[0])  #     '_'    
        hwLabels.append(classNumStr)
        trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)  #       ,    
    testFileList = listdir('testDigits')        #         
    errorCount = 0.0
    mTest = len(testFileList) #    
    for i in range(mTest):
        fileNameStr = testFileList[i]   
        fileStr = fileNameStr.split('.')[0]     #     '.'    
        classNumStr = int(fileStr.split('_')[0])  #     '_'    
        vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)   #         ,
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)   #    ,              。
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "
the total number of errors is: %d" % errorCount print "
the total error rate is: %f" % (errorCount/float(mTest))