raspberry pi 1でtensorflow lite その9


概要

raspberry pi 1でtensorflow liteやってみた。
tfliteファイルを作ってみた。
kerasモデルから作ってみた。
データセットは、fizzbuzz.

環境

tensorflow 1.12

kerasモデルを学習してセーブする。

import numpy as np
from tensorflow.contrib.keras.api.keras.models import Sequential
from tensorflow.contrib.keras.api.keras.layers import Dense, Activation
from tensorflow.contrib.keras.api.keras.models import Model

def binary_encode(i, num_digits):
    return np.array([i >> d & 1 for d in range(num_digits)])

def fizz_buzz_encode(i):
    if i % 15 == 0:
        return np.array([0, 0, 0, 1])
    elif i % 5  == 0:
        return np.array([0, 0, 1, 0])
    elif i % 3  == 0:
        return np.array([0, 1, 0, 0])
    else:
        return np.array([1, 0, 0, 0])

def fizz_buzz(i, prediction):
    return [str(i), "fizz", "buzz", "fizzbuzz"][prediction]

NUM_DIGITS = 7
trX = np.array([binary_encode(i, NUM_DIGITS) for i in range(1, 101)])
trY = np.array([fizz_buzz_encode(i) for i in range(1, 101)])
model = Sequential()
model.add(Dense(64, input_dim = 7))
model.add(Activation('tanh'))
model.add(Dense(4, input_dim = 64))
model.add(Activation('softmax'))
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
model.fit(trX, trY, epochs = 3600, batch_size = 64)
model.save('fizzbuzz5.h5')
print ("save model")

kerasファイルからtfliteファイルを作る。

import tensorflow as tf
import tensorflow.contrib.lite as lite

converter = lite.TFLiteConverter.from_keras_model_file("fizzbuzz5.h5")
tflite_model = converter.convert()
open("fizzbuzz.tflite", "wb").write(tflite_model)
print ("ok")

tfliteファイルを検証する。

import numpy as np
import tensorflow as tf
import tensorflow.contrib.lite as lite

def binary_encode(i, num_digits):
    return np.array([i >> d & 1 for d in range(num_digits)])

def fizz_buzz_encode(i):
    if i % 15 == 0:
        return np.array([0, 0, 0, 1])
    elif i % 5  == 0:
        return np.array([0, 0, 1, 0])
    elif i % 3  == 0:
        return np.array([0, 1, 0, 0])
    else:
        return np.array([1, 0, 0, 0])

def fizz_buzz(i, prediction):
    return [str(i), "fizz", "buzz", "fizzbuzz"][prediction]

NUM_DIGITS = 7
trX = np.array([binary_encode(i, NUM_DIGITS) for i in range(1, 101)])
interpreter = lite.Interpreter(model_path = "fizzbuzz.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
#print (input_details)
#print (output_details)
for i in range(1, 100):
  input_data = np.array([trX[i - 1]], dtype = np.float32)
  interpreter.set_tensor(input_details[0]['index'], input_data)
  interpreter.invoke()
  output_data = interpreter.get_tensor(output_details[0]['index'])
  print (fizz_buzz(i, np.argmax(output_data[0])))

以上。