raspberry pi 1でtensorflow lite その13
4165 ワード
概要
raspberry pi 1でtensorflow liteやってみた。
kerasモデルからtfliteファイルを作ってラズパイで、実行。
データセットは、fizzbuzz.
Makefileを書く。
CXXFLAGS ?= -I../tensorflow -I../tensorflow/tensorflow/lite/tools/make/downloads/flatbuffers/include
LDFLAGS ?= -L../tensorflow/tensorflow/lite/tools/make/gen/rpi_armv6l/lib
.PHONY: all clean
all: lite2
lite2: main.cpp
g++ --std=c++11 main.cpp -O2 $(CXXFLAGS) $(LDFLAGS) -ltensorflow-lite -lstdc++ -lpthread -ldl -lm -o lite2
clean:
rm -f lite2
Makeして実行。
#include <vector>
#include <chrono>
#include <iostream>
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include <iostream>
#include <fstream>
#include <stdlib.h>
using namespace std;
bool is_error(TfLiteStatus const & status)
{
return status != kTfLiteOk;
}
int main(int argc, char const * argv[])
{
std::string a = "fizzbuzz.tflite";
TfLiteStatus status;
std::unique_ptr<tflite::FlatBufferModel> model;
std::unique_ptr<tflite::Interpreter> interpreter;
std::cout << "0: Loading model: " << a << std::endl;
model = tflite::FlatBufferModel::BuildFromFile(a.c_str());
if (!model)
{
std::cerr << "0: Failed to load the model." << std::endl;
return -1;
}
std::cout << "1: The model was loaded successful." << std::endl;
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(* model, resolver)(& interpreter);
std::cout << "2: interpreter was build successful." << std::endl;
status = interpreter->AllocateTensors();
if (is_error(status))
{
std::cerr << "2: Failed to allocate the memory for tensors." << std::endl;
return -1;
}
std::cout << "3: The model was allocated successful." << std::endl;
float * in = interpreter->typed_input_tensor<float>(0);
float * out = interpreter->typed_output_tensor<float>(0);
int i;
for (i = 1; i < 100; i++)
{
in[0] = i & 0x1 ? 1.0f : 0.0f;
in[1] = (i >> 1) & 0x1 ? 1.0f : 0.0f;
in[2] = (i >> 2) & 0x1 ? 1.0f : 0.0f;
in[3] = (i >> 3) & 0x1 ? 1.0f : 0.0f;
in[4] = (i >> 4) & 0x1 ? 1.0f : 0.0f;
in[5] = (i >> 5) & 0x1 ? 1.0f : 0.0f;
in[6] = (i >> 6) & 0x1 ? 1.0f : 0.0f;
status = interpreter->Invoke();
if (is_error(status))
{
std::cerr << "3: Failed to invoke the interpreter." << std::endl;
return -1;
}
if (out[0] > 0.5f) std::printf ("%2d ", i);
if (out[1] > 0.5f) std::printf ("fizz ");
if (out[2] > 0.5f) std::printf ("buzz ");
if (out[3] > 0.5f) std::printf ("fizzbuzz ");
}
cout << "ok" << endl;
return 0;
}
結果
0: Loading model: fizzbuzz.tflite
1: The model was loaded successful.
2: interpreter was build successful.
3: The model was allocated successful.
1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23 fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44 fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86 fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz ok
CXXFLAGS ?= -I../tensorflow -I../tensorflow/tensorflow/lite/tools/make/downloads/flatbuffers/include
LDFLAGS ?= -L../tensorflow/tensorflow/lite/tools/make/gen/rpi_armv6l/lib
.PHONY: all clean
all: lite2
lite2: main.cpp
g++ --std=c++11 main.cpp -O2 $(CXXFLAGS) $(LDFLAGS) -ltensorflow-lite -lstdc++ -lpthread -ldl -lm -o lite2
clean:
rm -f lite2
#include <vector>
#include <chrono>
#include <iostream>
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include <iostream>
#include <fstream>
#include <stdlib.h>
using namespace std;
bool is_error(TfLiteStatus const & status)
{
return status != kTfLiteOk;
}
int main(int argc, char const * argv[])
{
std::string a = "fizzbuzz.tflite";
TfLiteStatus status;
std::unique_ptr<tflite::FlatBufferModel> model;
std::unique_ptr<tflite::Interpreter> interpreter;
std::cout << "0: Loading model: " << a << std::endl;
model = tflite::FlatBufferModel::BuildFromFile(a.c_str());
if (!model)
{
std::cerr << "0: Failed to load the model." << std::endl;
return -1;
}
std::cout << "1: The model was loaded successful." << std::endl;
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder(* model, resolver)(& interpreter);
std::cout << "2: interpreter was build successful." << std::endl;
status = interpreter->AllocateTensors();
if (is_error(status))
{
std::cerr << "2: Failed to allocate the memory for tensors." << std::endl;
return -1;
}
std::cout << "3: The model was allocated successful." << std::endl;
float * in = interpreter->typed_input_tensor<float>(0);
float * out = interpreter->typed_output_tensor<float>(0);
int i;
for (i = 1; i < 100; i++)
{
in[0] = i & 0x1 ? 1.0f : 0.0f;
in[1] = (i >> 1) & 0x1 ? 1.0f : 0.0f;
in[2] = (i >> 2) & 0x1 ? 1.0f : 0.0f;
in[3] = (i >> 3) & 0x1 ? 1.0f : 0.0f;
in[4] = (i >> 4) & 0x1 ? 1.0f : 0.0f;
in[5] = (i >> 5) & 0x1 ? 1.0f : 0.0f;
in[6] = (i >> 6) & 0x1 ? 1.0f : 0.0f;
status = interpreter->Invoke();
if (is_error(status))
{
std::cerr << "3: Failed to invoke the interpreter." << std::endl;
return -1;
}
if (out[0] > 0.5f) std::printf ("%2d ", i);
if (out[1] > 0.5f) std::printf ("fizz ");
if (out[2] > 0.5f) std::printf ("buzz ");
if (out[3] > 0.5f) std::printf ("fizzbuzz ");
}
cout << "ok" << endl;
return 0;
}
結果
0: Loading model: fizzbuzz.tflite
1: The model was loaded successful.
2: interpreter was build successful.
3: The model was allocated successful.
1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23 fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44 fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86 fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz ok
0: Loading model: fizzbuzz.tflite
1: The model was loaded successful.
2: interpreter was build successful.
3: The model was allocated successful.
1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16 17 fizz 19 buzz fizz 22 23 fizz buzz 26 fizz 28 29 fizzbuzz 31 32 fizz 34 buzz fizz 37 38 fizz buzz 41 fizz 43 44 fizzbuzz 46 47 fizz 49 buzz fizz 52 53 fizz buzz 56 fizz 58 59 fizzbuzz 61 62 fizz 64 buzz fizz 67 68 fizz buzz 71 fizz 73 74 fizzbuzz 76 77 fizz 79 buzz fizz 82 83 fizz buzz 86 fizz 88 89 fizzbuzz 91 92 fizz 94 buzz fizz 97 98 fizz ok
以上。
Author And Source
この問題について(raspberry pi 1でtensorflow lite その13), 我々は、より多くの情報をここで見つけました https://qiita.com/ohisama@github/items/b00e363c32cb53f2cee6著者帰属:元の著者の情報は、元のURLに含まれています。著作権は原作者に属する。
Content is automatically searched and collected through network algorithms . If there is a violation . Please contact us . We will adjust (correct author information ,or delete content ) as soon as possible .