連続サブ配列の最大和(Maximum Subaray)
連続するサブ配列の最大和を求めて、ここは道の例題LeetCode|Maximum Subarayがあります
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
方法一:O(n)の動的計画解法
方法2:上記のダイナミックプランニングを改良し、すべて負の場合を考慮する必要はありません.
方法3:n lognの分治法(cont.)
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6.
More practice: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
方法一:O(n)の動的計画解法
class Solution {
public:
int maxSubArray(vector& nums) {
if(nums.size() == 0) return 0;
int res = 0, sum = 0;
bool allNegtive = true;
for(int i = 0; i < nums.size(); i++){ // [-2, 1], disgard the first
if( sum + nums[i] > 0){
sum += nums[i];
allNegtive = false;
} else {
sum = 0;
}
res = max(res, sum);
}
if(allNegtive){
res = nums[0];
for(int i = 1; i < nums.size(); i++){
res = max(res, nums[i]);
}
}
return res;
}
};
方法2:上記のダイナミックプランニングを改良し、すべて負の場合を考慮する必要はありません.
class Solution {
public:
int maxProduct(vector<int>& nums) {
if(nums.size() == 0) return 0;
int cur = nums[0], res = cur;
for(int i = 1; i < nums.size(); ++i){
cur = max(nums[i], cur+nums[i]);
res = max(cur, res);
} return res;
}
};
方法3:n lognの分治法(cont.)
class Solution {
public:
int maxsum(vector<int>& arr, int l, int r){
if(l == r) return arr[l];
int m = l + (r-l)/2;
int cur = arr[m], lmax = arr[m], rmax = arr[m];
for(int i = m-1; i >= l; --i){
cur += arr[i];
lmax = max(lmax, cur);
}
cur = arr[m];
for(int i = m+1; i <= r; ++i){
cur += arr[i];
rmax = max(rmax, cur);
}
int ans = lmax+rmax-arr[m];
if(l <= m-1) ans = max(ans, maxsum(arr, l, m-1));
if(m+1 <= r) ans = max(ans, maxsum(arr, m+1, r));
return ans;
}
int FindGreatestSumOfSubArray(vector<int> arr) {
if(arr.size() == 0) return 0;
return maxsum(arr, 0, arr.size()-1);
}
};