k-means clustering K平均アルゴリズム
3231 ワード
このアルゴリズムの主な役割は、画面上の多くの点を、隣接する点を彼に最も近い点に集めることです.
k-means algorithmアルゴリズムはクラスタリングアルゴリズムであり,n個のオブジェクトを彼らの属性に基づいてk個の分割,kphp実装アルゴリズムコードは以下の通りである.
k-means algorithmアルゴリズムはクラスタリングアルゴリズムであり,n個のオブジェクトを彼らの属性に基づいてk個の分割,k
class Cluster
{
public $points;
public $avgPoint;
function calculateAverage($maxX, $maxY)
{
if (count($this->points)==0)
{
$this->avgPoint->x = rand(0, $maxX);
$this->avgPoint->y = rand(0,$maxY);
//we didn't get any clues at all :( lets just randomize and hope for better...
return;
}
foreach($this->points as $p)
{
$xsum += $p->x;
$ysum += $p->y;
}
$count = count($this->points);
$this->avgPoint->x = $xsum / $count;
$this->avgPoint->y = $ysum / $count;
}
}
class Point
{
public $x;
public $y;
function getDistance($p)
{
$x1 = $this->x - $p->x;
$y1 = $this->y - $p->y;
return sqrt($x1*$x1 + $y1*$y1);
}
}
function distributeOverClusters($k, $arr)
{
foreach($arr as $p)
{ if ($p->x > $maxX)
$maxX = $p->x;
if ($p->y > $maxY)
$maxY = $p->y;
}
$clusters = array();
for($i = 0; $i < $k; $i++)
{
$clusters[] = new Cluster();
$tmpP = new Point();
$tmpP->x=rand(0,$maxX);
$tmpP->y=rand(0,$maxY);
$clusters[$i]->avgPoint = $tmpP;
}
#deploy points to closest center.
#recalculate centers
for ($a = 0; $a < 200; $a++) # run it 200 times
{
foreach($clusters as $cluster)
$cluster->points = array(); //reinitialize
foreach($arr as $pnt)
{
$bestcluster=$clusters[0];
$bestdist = $clusters[0]->avgPoint->getDistance($pnt);
foreach($clusters as $cluster)
{
if ($cluster->avgPoint->getDistance($pnt) < $bestdist)
{
$bestcluster = $cluster;
$bestdist = $cluster->avgPoint->getDistance($pnt);
}
}
$bestcluster->points[] = $pnt;//add the point to the best cluster.
}
//recalculate the centers.
foreach($clusters as $cluster)
$cluster->calculateAverage($maxX, $maxY);
}
return $clusters;
}
$p = new Point();
$p->x = 2;
$p->y = 2;
$p2 = new Point();
$p2->x = 3;
$p2->y = 2;
$p3 = new Point();
$p3->x = 8;
$p3->y = 2;
$arr[] = $p;
$arr[] = $p2;
$arr[] = $p3;
var_dump(distributeOverClusters(2, $arr));
-
:http://en.wikipedia.org/wiki/K-means_clustering