PandasのDataFrameチュートリアル
1、DF作成
2、DF遍歴
3、DFクエリー、インデックス
4、DF修正
5、DF増加
pandasラーニング:seriesとdataframeをソートします.https://blog.csdn.net/u014662865/article/details/59058039
pandasのカラムの値に基づいて、DataFrameから行を選択します.https://www.cnblogs.com/to-creat/p/7724562.html
>>> import pandas as pd
>>> val = [[1,3,3,4],[5,6,7,8],[1,1,1,1],[2,3,2,3]]
>>> cols = ['A','B','C','D']
>>> indx= ['i1','i2','i3','i4']
>>> df = pd.DataFrame(val,columns=cols) # DF ,
>>> print(df)
A B C D
0 1 3 3 4
1 5 6 7 8
2 1 1 1 1
3 2 3 2 3
>>> df = pd.DataFrame(val,columns=cols,index=indx) #DF ,
>>> df
A B C D
i1 1 3 3 4
i2 5 6 7 8
i3 1 1 1 1
i4 2 3 2 3
>>> print(df.values) #DF
[[1 3 3 4]
[5 6 7 8]
[1 1 1 1]
[2 3 2 3]]
>>> print(df[['A','B']].values)
[[1 3]
[5 6]
[1 1]
[2 3]]
>>> df.columns # columns, list
Index(['A', 'B', 'C', 'D'], dtype='object')
>>> df.columns.tolist()
['A', 'B', 'C', 'D']
>>> df.index
Index(['i1', 'i2', 'i3', 'i4'], dtype='object') # , list
>>> df.index.tolist()
['i1', 'i2', 'i3', 'i4']
>>>
2、DF遍歴
>>> for row in df.index:
... print(df.loc[row][['A','B']]) # , A,B
...
A 1
B 3
Name: i1, dtype: int64
A 5
B 6
Name: i2, dtype: int64
A 1
B 1
Name: i3, dtype: int64
A 2
B 3
Name: i4, dtype: int64
>>>
3、DFクエリー、インデックス
>>> df
A B C D
i1 1 3 3 4
i2 5 6 7 8
i3 1 1 1 1
i4 2 3 2 3
>>> df.loc['i1','A'] #loc, , ,
1
>>> df.loc['i1':'i3','A':'C'] #
A B C
i1 1 3 3
i2 5 6 7
i3 1 1 1
>>>
>>> df.loc[['i1','i3'],['A','C']] # ,list
A C
i1 1 3
i3 1 1
>>> df
A B C D
i1 1 3 3 4
i2 5 6 7 8
i3 1 1 1 1
i4 2 3 2 3
>>> df.iloc[1,2] #.iloc
7
>>> df.iloc[0:2,1:2] #
B
i1 3
i2 6
>>> df.iloc[[0,1],[1,2]] # ,list
B C
i1 3 3
i2 6 7
>>>
4、DF修正
>>> df
A B C D
i1 1 3 3 4
i2 5 6 7 8
i3 1 1 1 1
i4 2 3 2 3
>>> df['A']=100 #
>>> df
A B C D
i1 100 3 3 4
i2 100 6 7 8
i3 100 1 1 1
i4 100 3 2 3
>>> df.loc['i1','A']=222 #
>>> df
A B C D
i1 222 3 3 4
i2 5 6 7 8
i3 1 1 1 1
i4 2 3 2 3
>>>df.loc[df['A']==1,'B'] = 10 #
A B C D
i1 1 10 3 4
i2 5 6 7 8
i3 1 10 1 1
i4 2 3 2 3
5、DF増加
>>> df
A B C D
0 1 3 3 4
1 5 6 7 8
2 1 1 1 1
3 2 3 2 3
>>> temp
A B C D
0 1 3 3 4
1 5 6 7 8
2 1 1 1 1
3 2 3 2 3
>>> result=df.append(temp,ignore_index=True) # , ,
>>> result
A B C D
0 1 3 3 4
1 5 6 7 8
2 1 1 1 1
3 2 3 2 3
4 1 3 3 4
5 5 6 7 8
6 1 1 1 1
7 2 3 2 3
>>> df.loc[4]=[7,8,9,10] # +
>>> df
A B C D
0 1 3 3 4
1 5 6 7 8
2 1 1 1 1
3 2 3 2 3
4 7 8 9 10
>>>
pandasラーニング:seriesとdataframeをソートします.https://blog.csdn.net/u014662865/article/details/59058039
pandasのカラムの値に基づいて、DataFrameから行を選択します.https://www.cnblogs.com/to-creat/p/7724562.html