tenssorflowモデルをPBファイルとPBファイルの読み取り方法に包装します。
1781 ワード
1.tenssorflowモデルファイルをPBファイルに包装する
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
with tf.Graph().as_default():
with tf.device("/cpu:0"):
config = tf.ConfigProto(allow_soft_placement=True)
with tf.Session(config=config).as_default() as sess:
model = Your_Model_Name()
model.build_graph()
sess.run(tf.initialize_all_variables())
saver = tf.train.Saver()
ckpt_path = "/your/model/path"
saver.restore(sess, ckpt_path)
graphdef = tf.get_default_graph().as_graph_def()
tf.train.write_graph(sess.graph_def,"/your/save/path/","save_name.pb",as_text=False)
frozen_graph = tf.graph_util.convert_variables_to_constants(sess,graphdef,['output/node/name'])
frozen_graph_trim = tf.graph_util.remove_training_nodes(frozen_graph)
freeze_graph.freeze_graph('/your/save/path/save_name.pb','',True, ckpt_path,'output/node/name','save/restore_all','save/Const:0','frozen_name.pb',True,"")
2.PBファイル読み込み使用
output_graph_def = tf.GraphDef()
with open("your_name.pb","rb") as f:
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
node_in = sess.graph.get_tensor_by_name("input_node_name")
model_out = sess.graph.get_tensor_by_name("out_node_name")
feed_dict = {node_in:in_data}
pred = sess.run(model_out, feed_dict)
以上、tenssorflowモデルをPBファイルとPBファイルの読み取り方法に包装しました。つまり、小編集で皆さんに共有する内容です。参考にしていただければと思います。よろしくお願いします。