Spark Streaming kafkaへデータを書くDemo
I’d suggest the following approach: Use (and re-use) one
Here’s the high-level setup for this approach: First, you must “wrap” Kafka’s You “ship” the wrapped producer to each executor by using a broadcast variable. Within your actual processing logic, you access the wrapped producer through the broadcast variable, and use it to write processing results back to Kafka.
The code snippets below work with Spark Streaming as of Spark 2.0.
Step 1: Wrapping KafkaProducer
Step 2: Use a broadcast variable to give each executor its own wrapped KafkaProducerinstance
Step 3: Write from Spark Streaming to Kafka, re-using the same wrapped KafkaProducerinstance (for each executor)
Hope this helps.
KafkaProducer
instance per executor process/JVM. Here’s the high-level setup for this approach:
KafkaProducer
because, as you mentioned, it is not serializable. Wrapping it allows you to “ship” it to the executors. The key idea here is to use a lazy val
so that you delay instantiating the producer until its first use, which is effectively a workaround so that you don’t need to worry about KafkaProducer
not being serializable. The code snippets below work with Spark Streaming as of Spark 2.0.
Step 1: Wrapping KafkaProducer
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}
class MySparkKafkaProducer[K, V](createProducer: () => KafkaProducer[K, V]) extends Serializable {
/* This is the key idea that allows us to work around running into
NotSerializableExceptions. */
lazy val producer = createProducer()
def send(topic: String, key: K, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, key, value))
def send(topic: String, value: V): Future[RecordMetadata] =
producer.send(new ProducerRecord[K, V](topic, value))
}
object MySparkKafkaProducer {
import scala.collection.JavaConversions._
def apply[K, V](config: Map[String, Object]): MySparkKafkaProducer[K, V] = {
val createProducerFunc = () => {
val producer = new KafkaProducer[K, V](config)
sys.addShutdownHook {
// Ensure that, on executor JVM shutdown, the Kafka producer sends
// any buffered messages to Kafka before shutting down.
producer.close()
}
producer
}
new MySparkKafkaProducer(createProducerFunc)
}
def apply[K, V](config: java.util.Properties): MySparkKafkaProducer[K, V] = apply(config.toMap)
}
Step 2: Use a broadcast variable to give each executor its own wrapped KafkaProducerinstance
import org.apache.kafka.clients.producer.ProducerConfig
val ssc: StreamingContext = {
val sparkConf = new SparkConf().setAppName("spark-streaming-kafka-example").setMaster("local[2]")
new StreamingContext(sparkConf, Seconds(1))
}
ssc.checkpoint("checkpoint-directory")
val kafkaProducer: Broadcast[MySparkKafkaProducer[Array[Byte], String]] = {
val kafkaProducerConfig = {
val p = new Properties()
p.setProperty("bootstrap.servers", "broker1:9092")
p.setProperty("key.serializer", classOf[ByteArraySerializer].getName)
p.setProperty("value.serializer", classOf[StringSerializer].getName)
p
}
ssc.sparkContext.broadcast(MySparkKafkaProducer[Array[Byte], String](kafkaProducerConfig))
}
Step 3: Write from Spark Streaming to Kafka, re-using the same wrapped KafkaProducerinstance (for each executor)
import java.util.concurrent.Future
import org.apache.kafka.clients.producer.RecordMetadata
val stream: DStream[String] = ???
stream.foreachRDD { rdd =>
rdd.foreachPartition { partitionOfRecords =>
val metadata: Stream[Future[RecordMetadata]] = partitionOfRecords.map { record =>
kafkaProducer.value.send("my-output-topic", record)
}.toStream
metadata.foreach { metadata => metadata.get() }
}
}
Hope this helps.