OpencvにおけるCインタフェースとC++インタフェースの相互変換(MatとCvMat,IplImage相互変換)


MatとCvMat,IplImageは互いに転化する
Now for converting theMatobject you can use either theIplImage or theCvMatoperators. While in the C interface
you used to work with pointers here it’s no longer the case. In the C++ interface we have mostlyMatobjects. These objects may be freely converted to bothIplImageandCvMatwith simple assignment. For example: Mat I; IplImage pI = I; CvMat mI = I; Now if you want pointers the conversion gets just a little more complicated. The compilers can no longer automatically determinate what you want and as you need to explicitly specify your goal. This is to call theIplImage andCvMat operators and then get their pointers. For getting the pointer we use the & sign: Mat I; IplImage*pI = &I.operator IplImage(); CvMat*mI = &I.operator CvMat(); One of the biggest complaints of the C interface is that it leaves all the memory management to you. You need to figure out when it is safe to release your unused objects and make sure you do so before the program finishes or you could have troublesome memory leeks. To work around this issue in OpenCV there is introduced a sort of smart pointer. This will automatically release the object when it’s no longer in use. To use this declare the pointers as a specialization of thePtr: Ptr piI = &I.operator IplImage(); Converting from the C data structures to theMatis done by passing these inside its constructor. For example: Mat K(piL), L;
L = Mat(pI);
Opencvの例
#include <stdio.h>
#include <iostream>


#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>


using namespace cv;  // The new C++ interface API is inside this namespace. Import it.
using namespace std;


void help( char* progName)
{
    cout << endl << progName 
        << " shows how to use cv::Mat and IplImages together (converting back and forth)." << endl 
        << "Also contains example for image read, spliting the planes, merging back and "  << endl 
        << " color conversion, plus iterating through pixels. "                            << endl
        << "Usage:" << endl
        << progName << " [image-name Default: lena.jpg]"                           << endl << endl;
}


// comment out the define to use only the latest C++ API
#define DEMO_MIXED_API_USE 


int main( int argc, char** argv )
{
    help(argv[0]);
    const char* imagename = argc > 1 ? argv[1] : "lena.jpg";


#ifdef DEMO_MIXED_API_USE
    Ptr<IplImage> IplI = cvLoadImage(imagename);      // Ptr<T> is safe ref-counting pointer class
    if(IplI.empty())
    {
        cerr << "Can not load image " <<  imagename << endl;
        return -1;
    }
    Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.    
#else
    Mat I = imread(imagename);        // the newer cvLoadImage alternative, MATLAB-style function
    if( I.empty() )                   // same as if( !I.data )
    {
        cerr << "Can not load image " <<  imagename << endl;
        return -1;
    }
#endif
    
    // convert image to YUV color space. The output image will be created automatically. 
    Mat I_YUV;
    cvtColor(I, I_YUV, CV_BGR2YCrCb); 


    vector<Mat> planes;    // Use the STL's vector structure to store multiple Mat objects 
    split(I_YUV, planes);  // split the image into separate color planes (Y U V)


#if 1 // change it to 0 if you want to see a blurred and noisy version of this processing
    // Mat scanning
    // Method 1. process Y plane using an iterator
    MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
    for(; it != it_end; ++it)
    {
        double v = *it * 1.7 + rand()%21 - 10;
        *it = saturate_cast<uchar>(v*v/255);
    }
    
    for( int y = 0; y < I_YUV.rows; y++ )
    {
        // Method 2. process the first chroma plane using pre-stored row pointer.
        uchar* Uptr = planes[1].ptr<uchar>(y);
        for( int x = 0; x < I_YUV.cols; x++ )
        {
            Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
            
            // Method 3. process the second chroma plane using individual element access
            uchar& Vxy = planes[2].at<uchar>(y, x);
            Vxy =        saturate_cast<uchar>((Vxy-128)/2 + 128);
        }
    }


#else
    
    Mat noisyI(I.size(), CV_8U);           // Create a matrix of the specified size and type
    
    // Fills the matrix with normally distributed random values (around number with deviation off).
    // There is also randu() for uniformly distributed random number generation
    randn(noisyI, Scalar::all(128), Scalar::all(20)); 
    
    // blur the noisyI a bit, kernel size is 3x3 and both sigma's are set to 0.5
    GaussianBlur(noisyI, noisyI, Size(3, 3), 0.5, 0.5); 


    const double brightness_gain = 0;
    const double contrast_gain = 1.7;


#ifdef DEMO_MIXED_API_USE
    // To pass the new matrices to the functions that only work with IplImage or CvMat do:
    // step 1) Convert the headers (tip: data will not be copied).
    // step 2) call the function   (tip: to pass a pointer do not forget unary "&" to form pointers)
    
    IplImage cv_planes_0 = planes[0], cv_noise = noisyI;    
    cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
#else
    addWeighted(planes[0], contrast_gain, noisyI, 1, -128 + brightness_gain, planes[0]);
#endif
    
    const double color_scale = 0.5;
    // Mat::convertTo() replaces cvConvertScale. 
    // One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
    planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));


    // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
    // This expression will not create any temporary arrays ( so should be almost as fast as above)
    planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));


    // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
    planes[0] = planes[0].mul(planes[0], 1./255);
#endif


    
    merge(planes, I_YUV);                // now merge the results back
    cvtColor(I_YUV, I, CV_YCrCb2BGR);  // and produce the output RGB image


    
    namedWindow("image with grain", CV_WINDOW_AUTOSIZE);   // use this to create images


#ifdef DEMO_MIXED_API_USE
    // this is to demonstrate that I and IplI really share the data - the result of the above
    // processing is stored in I and thus in IplI too.
    cvShowImage("image with grain", IplI);
#else
    imshow("image with grain", I); // the new MATLAB style function show
#endif
    waitKey();


    // Tip: No memory freeing is required! 
    //      All the memory will be automatically released by the Vector<>, Mat and Ptr<> destructor.
    return 0;    
}