C++ではCUDA自身を使ってよく使われる深さ学習アクティブ化関数をどのように実現しますか?

7326 ワード

本文は個人ブログhttps://kezunlin.me/post/ee123cac/に先発して、最新の内容を読むことを歓迎します!
how to implement deep learning activation kernels with cuda in c++
Guide
  • Part 1:cpp cuda programming tutorial
  • Part 2: cuda activation kernels
  • Part 3: cublasSgemm for large matrix multiplication on gpu

  • cuda utils
    cuda.h
    #ifndef __CUDA_H_
    #define __CUDA_H_
    #include "cuda_runtime.h"
    #include "curand.h"
    #include "cublas_v2.h"
    
    #define BLOCK 512
    
    void check_error(cudaError_t status);
    
    dim3 cuda_gridsize(size_t n);
    
    float* cuda_make_array(float* x,size_t n);
    
    void cuda_free(float* x_gpu);
    
    void cuda_push_array(float *x_gpu,float* x,size_t n);
    
    void cuda_pull_array(float *x_gpu,float* x,size_t n);
    
    
    #endif
    

    cuda.cpp
    #include "cuda.h"
    #include "blas.h"
    
    #include 
    #include 
    #include 
    #include 
    
    void error(const char* s)
    {
        perror(s);
        assert(0);
        exit(-1);
    }
    
    void check_error(cudaError_t status)
    {
        //cudaDeviceSynchronize();
        cudaError_t status2 = cudaGetLastError();
        if (status != cudaSuccess)
        {   
            const char *s = cudaGetErrorString(status);
            char buffer[256];
            printf("CUDA Error: %s
    ", s); assert(0); snprintf(buffer, 256, "CUDA Error: %s", s); error(buffer); } if (status2 != cudaSuccess) { const char *s = cudaGetErrorString(status); char buffer[256]; printf("CUDA Error Prev: %s
    ", s); assert(0); snprintf(buffer, 256, "CUDA Error Prev: %s", s); error(buffer); } } dim3 cuda_gridsize(size_t n){ size_t k = (n-1) / BLOCK + 1; size_t x = k; size_t y = 1; if(x > 65535){ x = ceil(sqrt(k)); y = (n-1)/(x*BLOCK) + 1; } dim3 d = {x, y, 1}; //printf("%ld %ld %ld %ld
    ", n, x, y, x*y*BLOCK); return d; } float* cuda_make_array(float* x,size_t n) { float *x_gpu; size_t size = sizeof(float)*n; cudaError_t status = cudaMalloc((void **)&x_gpu, size); check_error(status); if(x){ status = cudaMemcpy(x_gpu, x, size, cudaMemcpyHostToDevice); check_error(status); } else { fill_gpu(n, 0, x_gpu, 1); } if(!x_gpu) error("Cuda malloc failed
    "); return x_gpu; } void cuda_free(float* x_gpu) { cudaError_t status = cudaFree(x_gpu); check_error(status); } void cuda_push_array(float *x_gpu,float* x,size_t n) { size_t size = sizeof(float)*n; cudaError_t status = cudaMemcpy(x_gpu,x,size,cudaMemcpyHostToDevice); check_error(status); } void cuda_pull_array(float *x_gpu,float* x,size_t n) { size_t size = sizeof(float)*n; cudaError_t status = cudaMemcpy(x,x_gpu,size,cudaMemcpyDeviceToHost); check_error(status); }



     style="display:block; text-align:center;"
     data-ad-layout="in-article"
     data-ad-format="fluid"
     data-ad-client="ca-pub-5653382914441020"
     data-ad-slot="7925631830">

     (adsbygoogle = window.adsbygoogle || []).push({});

    activation kernels


    activations.h

    #ifndef __ACTIVATIONS_H_
    #define __ACTIVATIONS_H_
    
    typedef enum{
        LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, \
        LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN
    } ACTIVATION;
    
    void activate_array_gpu(float* x,int n,ACTIVATION a);
    
    #endif

    activation_kernels.cu

    #include "activations.h"
    #include "cuda.h"
    #include "blas.h"
    
    __device__ float lhtan_activate_kernel(float x)
    {
        if(x < 0) return .001f*x;
        if(x > 1) return .001f*(x-1.f) + 1.f;
        return x;
    }
    
    __device__ float hardtan_activate_kernel(float x)
    {
        if (x < -1) return -1;
        if (x > 1) return 1;
        return x;
    }
    
    __device__ float linear_activate_kernel(float x){return x;}
    __device__ float logistic_activate_kernel(float x){return 1.f/(1.f + expf(-x));}
    __device__ float loggy_activate_kernel(float x){return 2.f/(1.f + expf(-x)) - 1;}
    __device__ float relu_activate_kernel(float x){return x*(x>0);}
    __device__ float elu_activate_kernel(float x){return (x >= 0)*x + (x < 0)*(expf(x)-1);}
    __device__ float relie_activate_kernel(float x){return (x>0) ? x : .01f*x;}
    __device__ float ramp_activate_kernel(float x){return x*(x>0)+.1f*x;}
    __device__ float leaky_activate_kernel(float x){return (x>0) ? x : .1f*x;}
    __device__ float tanh_activate_kernel(float x){return (2.f/(1 + expf(-2*x)) - 1);}
    __device__ float plse_activate_kernel(float x)
    {
        if(x < -4) return .01f * (x + 4);
        if(x > 4)  return .01f * (x - 4) + 1;
        return .125f*x + .5f;
    }
    __device__ float stair_activate_kernel(float x)
    {
        int n = floorf(x);
        if (n%2 == 0) return floorf(x/2);
        else return (x - n) + floorf(x/2);
    }
    
    __device__ float activate_kernel(float x, ACTIVATION a)
    {
        switch(a){
            case LINEAR:
                return linear_activate_kernel(x);
            case LOGISTIC:
                return logistic_activate_kernel(x);
            case LOGGY:
                return loggy_activate_kernel(x);
            case RELU:
                return relu_activate_kernel(x);
            case ELU:
                return elu_activate_kernel(x);
            case RELIE:
                return relie_activate_kernel(x);
            case RAMP:
                return ramp_activate_kernel(x);
            case LEAKY:
                return leaky_activate_kernel(x);
            case TANH:
                return tanh_activate_kernel(x);
            case PLSE:
                return plse_activate_kernel(x);
            case STAIR:
                return stair_activate_kernel(x);
            case HARDTAN:
                return hardtan_activate_kernel(x);
            case LHTAN:
                return lhtan_activate_kernel(x);
        }
        return 0;
    }
    
    __global__ void activate_array_kernel(float *x, int n, ACTIVATION a)
    {
        int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
        if(i < n) x[i] = activate_kernel(x[i], a);
    }
    
    void activate_array_gpu(float *x, int n, ACTIVATION a)
    {
        activate_array_kernel<<>>(x, n, a);
        check_error(cudaPeekAtLastError());
    }
    

    Reference


    History


    • 20191014: created.


    Copyright