Latex学習

6703 ワード

latexは公式を書くと以下のいくつかの状況に遭遇し、それぞれ以下の処理:1、正常です.普通の
a^3+b=c
\end{equation}
\label{eq:1}```
        ,     \ref{eq:1}

2,              ,           。      \align        
otag 。 \usepackage{amsmath} ```\begin{align} A &= jkhkjhkhkhb
otag \\ &= b
otag\\ dsj &= daj \end{align}``` :split

\begin{equation}\begin{split} (a + b)^3 &= (a + b) (a + b)^2\&= (a + b)(a^2 + 2ab + b^2)\&= a^3 + 3a^2b + 3ab^2 + b^3\end{split}\end{equation}

3.    ,    。\eqnarry
```\begin{eqnarray}
\frac{V_1(x)}{\beta_e}=-A_1\frac{\partial q}{\partial q}\dot{q}+Q_1\\
\frac{V_2(x)}{\beta_e}=-A_2\frac{\partial q}{\partial q}\dot{q}+Q_2
\end{eqnarray}```

4,     ,        。
     :split                 
\begin{equation}
 \begin{split}
  (a + b)^3 =&a^3+3a^2b+ \\
            & 3ab^2 + b^3
 \end{split}
\end{equation}
LaTeX                 ,                。


1、           $   \(   \),  :$f(x) = 3x + 7$   \(f(x) = 3x + 7\)       ;
    \[   \],     $$   $$,        ;
    \begin{equation}   \end{equation},                  ,             \begin{equation*}   \end{equation*}.


2、  
              ,  
 #  $ % & ~ _ ^ \ { }
              # $ % & _ { },       \# \$ \% \& \_ \{ \},        \。


3、     
  ^      ,  _      ,      :

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$

  :



      LaTeX       


4、    
       


5、    


6、             \mbox{text}       text,  :

\documentclass{article}
\usepackage{CJK}
\begin{CJK*}{GBK}{song}
\begin{document}
$$\mbox{    $x>0$}, \mbox{  }f(x)>0. $$
\end{CJK*}
\end{document}

  :




7、     
\frac{numerator}{denominator} \sqrt{expression_r_r_r}     ,
\sqrt[n]{expression_r_r_r}     n   .


8、   (3  )
\ldots              ;\cdots              ,

  :



    $$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$


9、      
()   [ ]   |      ;
{}     \{ \};
||     \|。
              ,     \left   \right, :

\[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).\]   



\left.   \right.      ,       ,  ,   :



   $$\left. \frac{du}{dx} \right|_{x=0}.$$


10、       



     :

\begin{eqnarray*}
\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\
& = & 2 \cos^2 \theta - 1.
\end{eqnarray*}

  &    ,      。
* latex       ,    latex      ,  *  


11、  



   :

The \emph{characteristic polynomial} $\chi(\lambda)$ of the
$3 \times 3$~matrix
\[ \left( \begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i \end{array} \right)\]
is given by the formula
\[ \chi(\lambda) = \left| \begin{array}{ccc}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i \end{array} \right|.\]

c      ,l      ,r      。


12、  、  、  、  (Derivatives, Limits, Sums and Integrals)

The expression_r_r_rs



are obtained in LaTeX by typing

\frac{du}{dt} and \frac{d^2 u}{dx^2}

respectively. The mathematical symbol  is produced using \partial. Thus the Heat Equation



is obtained in LaTeX by typing

\[ \frac{\partial u}{\partial t}
= h^2 \left( \frac{\partial^2 u}{\partial x^2}
+ \frac{\partial^2 u}{\partial y^2}
+ \frac{\partial^2 u}{\partial z^2}\right)\]

To obtain mathematical expression_r_r_rs such as



in displayed equations we type \lim_{x \to +\infty}, \inf_{x > s} and \sup_K respectively. Thus to obtain



(in LaTeX) we type

\[ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.\]

To obtain a summation sign such as



we type \sum_{i=1}^{2n}. Thus



is obtained by typing

\[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).\]

We now discuss how to obtain integrals in mathematical documents. A typical integral is the following:



This is typeset using

\[ \int_a^b f(x)\,dx.\]

The integral sign is typeset using the control sequence \int, and the limits of integration (in this case a and b are treated as a subscript and a superscript on the integral sign.
Most integrals occurring in mathematical documents begin with an integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dx, dy and dt. To obtain the correct appearance one should put extra space before the d, using \,. Thus





and



are obtained by typing

\[ \int_0^{+\infty} x^n e^{-x} \,dx = n!.\]

\[ \int \cos \theta \,d\theta = \sin \theta.\]

\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
= \int_{\theta=0}^{2\pi} \int_{r=0}^R
f(r\cos\theta,r\sin\theta) r\,dr\,d\theta.\]

and

\[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).\]

respectively.

In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence \! to remove a thin strip of unwanted space. Thus, for example, the multiple integral



is obtained by typing

$$ \[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy.\] $$

Had we typed

```\[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy.\]```

we would have obtained



A particularly noteworthy example comes when we are typesetting a multiple integral such as



Here we use \! three times to obtain suitable spacing between the integral signs. We typeset this integral using

```\[ \int \!\!\! \int_D f(x,y)\,dx\,dy.\]```

Had we typed

```\[ \int \int_D f(x,y)\,dx\,dy.\]```

we would have obtained



The following (reasonably complicated) passage exhibits a number of the features which we have been discussing:



One would typeset this in LaTeX by typing In non-relativistic wave mechanics, the wave function

$\psi(\mathbf{r},t)$ of a particle satisfies the\emph{Schr"{o}dinger Wave Equation} [ i\hbar\frac{\partial\psi}{\partial t} =\frac{-\hbar^2}{2m}\left(\frac{\partial^2}{\partial x^2}
  • \frac{\partial^2}{\partial y^2}
  • \frac{\partial^2}{\partial z^2}\right)\psi + V\psi.] It is customary to normalize the wave equation by demanding that [\int !!!\int !!!\int_{\textbf{R}^3}\left|\psi(\mathbf{r},0)\right|^2,dx,dy,dz = 1.] A simple calculation using the Schr"{o}dinger wave equation shows that [\frac{d}{dt}\int !!!\int !!!\int_{\textbf{R}^3}\left|\psi(\mathbf{r},t)\right|^2,dx,dy,dz = 0,] and hence [\int !!!\int !!!\int_{\textbf{R}^3}\left|\psi(\mathbf{r},t)\right|^2,dx,dy,dz = 1] for all times~$t$. If we normalize the wave function in this way then, for any (measurable) subset~$V$ of $\textbf{R}^3$ and time~$t$, [\int !!!\int !!!\int_V\left|\psi(\mathbf{r},t)\right|^2,dx,dy,dz] represents the probability that the particle is to be found within the region~$V$ at time~$t$.