C++復習のHashTableの簡単な実現


hashtable:本明細書では、「競合」(collision)を処理するために開鎖法(separate chaining)を採用しており、hashtableは一意の要素のみを格納し、重複は存在しない.
class hashtable {
public:
    //      , n        hashtable   bucket   
    hashtable(size_t n);
    ~hashtable();
    //      。      ,       true ;           ,   false
    bool insert(const int val);
    //             
    bool find(const int val);
    //      。     ,       true ;           ,   false
    bool erase(const int val);
    //        
    void clear();
    //          
    size_t size();
private:
    // bucket     
    struct hashtable_node {
        hashtable_node *next;
        int val;
        hashtable_node(int _val, hashtable_node *_next = NULL) :
                val(_val), next(_next) {
        }
    };

    hashtable(const hashtable & h); //            
    const hashtable & operator =(const hashtable & h);
    // hash   
    size_t hash(unsigned long x);
    //         n      n    
    unsigned long next_prime(unsigned long n);
    // bucket    
    vector buckets;
    //      
    size_t num_elements;
};
hashtable::hashtable(size_t n) {
    //    bucket           n      n    
    const size_t n_buckets = next_prime(n);
    buckets.reserve(n_buckets);
    buckets.insert(buckets.end(), n_buckets, NULL);
    num_elements = 0;
};
hashtable::~hashtable() {
    //           
    clear();
}
bool hashtable::insert(const int val) {
    //       。   ,   false
    if (find(val))
        return false;
    //     hash      bucket  
    const size_t k = hash(val);
    //               
    hashtable_node * tmp = new hashtable_node(val);
    tmp->next = buckets[k];
    buckets[k] = tmp;
    ++num_elements;
    //      
    return true;
}
bool hashtable::find(const int val) {
    const size_t k = hash(val);
    hashtable_node *p = buckets[k];
    //       bucket    
    while (p != NULL) {
        if (p->val = val)
            return true;
        p = p->next;
    }
    return false;
}
bool hashtable::erase(const int val) {
    const size_t k = hash(val);
    hashtable_node *p = buckets[k];
    hashtable_node *pre = NULL;
    //       
    while (p != NULL && p->val != val) {
        pre = p;
        p = p->next;
    }
    //       
    if (p == NULL)
        return false;
    if (pre == NULL)
        buckets[k] = p->next; //        
    else
        pre->next = p->next;
    delete p;
    return true;
}
void hashtable::clear() {
    //           
    for (int i = 0; i < buckets.size(); i++) {
        hashtable_node *p = buckets[i];
        while (p != NULL) {
            hashtable_node *next = p->next;
            delete p;
            p = next;
        }
    }
}
size_t hashtable::size() {
    return num_elements;
}
size_t hashtable::hash(unsigned long x) {
    return x % buckets.size();
}
unsigned long hashtable::next_prime(unsigned long n) {
    static const int num_primes = 28;
    static const unsigned long prime_list[num_primes] = { 53, 97, 193, 389, 769,
            1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241,
            786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653,
            100663319, 201326611, 402653189, 805306457, 1610612741,
            3221225473ul, 4294967291ul };
    //         n      n    
    int i = 0;
    while (i < num_primes && prime_list[i] < n)
        i++;
    return i == num_primes ? prime_list[num_primes - 1] : prime_list[i];
}
//           
bool hashtable::erase(const int val) {
    const size_t k = hash(val);
    hashtable_node *p = buckets[k];
    hashtable_node *tmp = NULL;
//       
    while (p->next != NULL && p->next->val != val) {
        p = p->next;
    }
    if (p->next == NULL)
        return false;
//       
    tmp = p->next;
    p->next = tmp->next;
    delete tmp;
    return true;
}