TF-Slim > Variables > regular variables / local (transient) variables / model variables / non-model variables
GeForce GTX 1070 (8GB)
ASRock Z170M Pro4S [Intel Z170chipset]
Ubuntu 14.04 LTS desktop amd64
TensorFlow v0.11
cuDNN v5.1 for Linux
CUDA v8.0
Python 2.7.6
IPython 5.1.0 -- An enhanced Interactive Python.
TF-Slimを使っていると、以下のvariablesがあるようだ。
- TensorFlow標準Variables (参考)
- regular variables
- local (transient) variables
- TF-Slim Variablesで加わったもの (doc)
- model variables
- non-model variables
Model variables are trained or fine-tuned during learning and are loaded from a checkpoint during evaluation or inference. Examples include the variables created by a slim.fully_connected or slim.conv2d layer.
...
Non-model variables are all other variables that are used during learning or evaluation but are not required for actually performing inference. For example, the global_step is a variable using during learning and evaluation but it is not actually part of the model.
TF-SlimのNon-model variablesとTensorFlowのlocal variablesの区別は未消化。
したいことはweightとbiasの出力。
Author And Source
この問題について(TF-Slim > Variables > regular variables / local (transient) variables / model variables / non-model variables), 我々は、より多くの情報をここで見つけました https://qiita.com/7of9/items/a84a2a0b070f92c9099b著者帰属:元の著者の情報は、元のURLに含まれています。著作権は原作者に属する。
Content is automatically searched and collected through network algorithms . If there is a violation . Please contact us . We will adjust (correct author information ,or delete content ) as soon as possible .