HDU 2588 GCD------オーラ関数変形

8232 ワード

GCD
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 812    Accepted Submission(s): 363
Problem Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
 
 
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
 
 
Output
For each test case,output the answer on a single line.
 
 
Sample Input
3
1 1
10 2
10000 72
Sample Output
1
6
260
 1 /*

 2   : 1<=X<=N   GCD(X,N)>=M.

 3 

 4   :if(n%p==0 && p>=m)    gcd(n,p)=p,

 5              n       p   ,

 6         n/p    。

 7          n/p    x1,x2,x3....

 8          gcd(n,x1*p)=gcd(n,x2*p)=gcd(n,x3*p)....

 9       

10 11 */

12 

13 #include<stdio.h>

14 #include<stdlib.h>

15 #include<string.h>

16 

17 

18 int Euler(int n)

19 {

20     int i,temp=n;

21     for(i=2;i*i<=n;i++)

22     {

23         if(n%i==0)

24         {

25             while(n%i==0)

26             n=n/i;

27             temp=temp/i*(i-1);

28         }

29     }

30     if(n!=1)

31     temp=temp/n*(n-1);

32     return temp;

33 }

34 

35 void make_ini(int n,int m)

36 {

37     int i,sum=0;

38     for(i=1;i*i<=n;i++)//!!

39     {

40         if(n%i==0)

41         {

42           if(i>=m)

43           sum=sum+Euler(n/i);

44           if((n/i)!=i && (n/i)>=m)//!!

45           sum=sum+Euler(i);

46         }

47     }

48     printf("%d
",sum); 49 } 50 51 int main() 52 { 53 int T,n,m; 54 while(scanf("%d",&T)>0) 55 { 56 while(T--) 57 { 58 scanf("%d%d",&n,&m); 59 make_ini(n,m); 60 } 61 } 62 return 0; 63 }