HDU-2601 Bone Collector(DP 01リュックサック)
HDU-2601 Bone Collector(DP 01リュックサック)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave … The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output One integer per line representing the maximum of the total value (this number will be less than 231).
Sample Input 1 5 10 1 2 3 4 5 5 4 3 2 1
Sample Output 14
标题:定番の01リュック問題、状態方程式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-vol[i]+val[i])ただし体積がゼロの場合を考慮して、3 3 3 3 3 3 3 3 0 1 ans:6
法二:空間を節約し、一次元dpがi-1層をi層で覆うことができる場合、すなわちdp[j-vol[i]]がdp[i-1層][j-vol[i]]を保存する.
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave … The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the maximum of the total value the bone collector can get ?
Input The first line contain a integer T , the number of cases. Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
Output One integer per line representing the maximum of the total value (this number will be less than 231).
Sample Input 1 5 10 1 2 3 4 5 5 4 3 2 1
Sample Output 14
标题:定番の01リュック問題、状態方程式:dp[i][j]=max(dp[i-1][j],dp[i-1][j-vol[i]+val[i])ただし体積がゼロの場合を考慮して、3 3 3 3 3 3 3 3 0 1 ans:6
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define pi 3.14159265359
typedef long long LL;
const int maxn = 1100;
int n, m, k;
int dp[maxn][maxn],vol[maxn],val[maxn];
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(dp,0,sizeof(dp));
scanf("%d %d",&n,&m);
for(int i=1; i<=n; i++){
scanf("%d",&val[i]);
}
for(int i=1; i<=n; i++){
scanf("%d",&vol[i]);
}
for(int i=1; i<=n; i++){
for(int j=m; j>=0; j--){
if(j>=vol[i])
dp[i][j] = max(dp[i-1][j],dp[i-1][j-vol[i]] +val[i] );
else //
dp[i][j] = dp[i-1][j];
}
}
printf("%d
",dp[n][m]);
}
return 0;
}
法二:空間を節約し、一次元dpがi-1層をi層で覆うことができる場合、すなわちdp[j-vol[i]]がdp[i-1層][j-vol[i]]を保存する.
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
#define pi 3.14159265359
typedef long long LL;
const int maxn = 1100;
int n, m, k;
int dp[maxn],vol[maxn],val[maxn];
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(dp,0,sizeof(dp));
scanf("%d %d",&n,&m);
for(int i=1; i<=n; i++){
scanf("%d",&val[i]);
}
for(int i=1; i<=n; i++){
scanf("%d",&vol[i]);
}
for(int i=1; i<=n; i++){
for(int j=m;j>=vol[i];j--){// i-1
dp[j] = max(dp[j],dp[j-vol[i]] + val[i] );
//cout<
}
}
printf("%d
",dp[m]);
}
return 0;
}